|
import logging |
|
import os |
|
import copy |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from collections import OrderedDict |
|
|
|
from einops import rearrange |
|
from timm.models.layers import DropPath, trunc_normal_ |
|
|
|
|
|
from .registry import register_image_encoder |
|
|
|
import mup.init |
|
from mup import MuReadout, set_base_shapes |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class MySequential(nn.Sequential): |
|
def forward(self, *inputs): |
|
for module in self._modules.values(): |
|
if type(inputs) == tuple: |
|
inputs = module(*inputs) |
|
else: |
|
inputs = module(inputs) |
|
return inputs |
|
|
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, norm, fn, drop_path=None): |
|
super().__init__() |
|
self.norm = norm |
|
self.fn = fn |
|
self.drop_path = drop_path |
|
|
|
def forward(self, x, *args, **kwargs): |
|
shortcut = x |
|
if self.norm != None: |
|
x, size = self.fn(self.norm(x), *args, **kwargs) |
|
else: |
|
x, size = self.fn(x, *args, **kwargs) |
|
|
|
if self.drop_path: |
|
x = self.drop_path(x) |
|
|
|
x = shortcut + x |
|
|
|
return x, size |
|
|
|
|
|
class Mlp(nn.Module): |
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.net = nn.Sequential(OrderedDict([ |
|
("fc1", nn.Linear(in_features, hidden_features)), |
|
("act", act_layer()), |
|
("fc2", nn.Linear(hidden_features, out_features)) |
|
])) |
|
|
|
def forward(self, x, size): |
|
return self.net(x), size |
|
|
|
|
|
class DepthWiseConv2d(nn.Module): |
|
def __init__( |
|
self, |
|
dim_in, |
|
kernel_size, |
|
padding, |
|
stride, |
|
bias=True, |
|
): |
|
super().__init__() |
|
self.dw = nn.Conv2d( |
|
dim_in, dim_in, |
|
kernel_size=kernel_size, |
|
padding=padding, |
|
groups=dim_in, |
|
stride=stride, |
|
bias=bias |
|
) |
|
|
|
def forward(self, x, size): |
|
B, N, C = x.shape |
|
H, W = size |
|
assert N == H * W |
|
|
|
x = self.dw(x.transpose(1, 2).view(B, C, H, W)) |
|
size = (x.size(-2), x.size(-1)) |
|
x = x.flatten(2).transpose(1, 2) |
|
return x, size |
|
|
|
|
|
class ConvEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=7, |
|
in_chans=3, |
|
embed_dim=64, |
|
stride=4, |
|
padding=2, |
|
norm_layer=None, |
|
pre_norm=True |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, |
|
kernel_size=patch_size, |
|
stride=stride, |
|
padding=padding |
|
) |
|
|
|
dim_norm = in_chans if pre_norm else embed_dim |
|
self.norm = norm_layer(dim_norm) if norm_layer else None |
|
|
|
self.pre_norm = pre_norm |
|
|
|
def forward(self, x, size): |
|
H, W = size |
|
if len(x.size()) == 3: |
|
if self.norm and self.pre_norm: |
|
x = self.norm(x) |
|
x = rearrange( |
|
x, 'b (h w) c -> b c h w', |
|
h=H, w=W |
|
) |
|
|
|
x = self.proj(x) |
|
|
|
_, _, H, W = x.shape |
|
x = rearrange(x, 'b c h w -> b (h w) c') |
|
if self.norm and not self.pre_norm: |
|
x = self.norm(x) |
|
|
|
return x, (H, W) |
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
|
|
def __init__(self, dim, base_dim, groups=8, base_groups=8, qkv_bias=True, dynamic_scale=True, standparam=True): |
|
super().__init__() |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
self.dynamic_scale = dynamic_scale |
|
|
|
self.dim = dim |
|
self.groups = groups |
|
self.group_dim = dim // groups |
|
|
|
self.base_dim = base_dim |
|
self.base_groups = base_groups |
|
self.base_group_dim = base_dim // base_groups |
|
|
|
self.group_wm = self.group_dim / self.base_group_dim |
|
self.standparam = standparam |
|
|
|
def forward(self, x, size): |
|
B, N, C = x.shape |
|
assert C == self.dim |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
scale = N ** -0.5 if self.dynamic_scale else self.dim ** -0.5 |
|
|
|
|
|
|
|
|
|
if self.standparam: |
|
scale = N ** -0.5 if self.dynamic_scale else self.dim ** -0.5 |
|
else: |
|
assert self.dynamic_scale |
|
scale = N ** -0.5 |
|
|
|
q = q * scale |
|
attention = q.transpose(-1, -2) @ k |
|
attention = attention.softmax(dim=-1) |
|
|
|
if not self.standparam: |
|
|
|
attention = attention / self.group_wm |
|
|
|
x = (attention @ v.transpose(-1, -2)).transpose(-1, -2) |
|
x = x.transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
return x, size |
|
|
|
|
|
class ChannelBlock(nn.Module): |
|
|
|
def __init__(self, dim, base_dim, groups, base_groups, mlp_ratio=4., qkv_bias=True, |
|
drop_path_rate=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
conv_at_attn=True, conv_at_ffn=True, dynamic_scale=True, standparam=True): |
|
super().__init__() |
|
|
|
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None |
|
self.channel_attn = PreNorm( |
|
norm_layer(dim), |
|
ChannelAttention(dim, base_dim, groups=groups, base_groups=base_groups, qkv_bias=qkv_bias, |
|
dynamic_scale=dynamic_scale, standparam=standparam), |
|
drop_path |
|
) |
|
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None |
|
self.ffn = PreNorm( |
|
norm_layer(dim), |
|
Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer), |
|
drop_path |
|
) |
|
|
|
def forward(self, x, size): |
|
if self.conv1: |
|
x, size = self.conv1(x, size) |
|
x, size = self.channel_attn(x, size) |
|
|
|
if self.conv2: |
|
x, size = self.conv2(x, size) |
|
x, size = self.ffn(x, size) |
|
|
|
return x, size |
|
|
|
|
|
def window_partition(x, window_size: int): |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size: int, H: int, W: int): |
|
B = windows.shape[0] // (H * W // window_size // window_size) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
|
def __init__(self, dim, base_dim, num_heads, base_num_heads, window_size, qkv_bias=True, standparam=True): |
|
|
|
super().__init__() |
|
|
|
self.window_size = window_size |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.base_dim = base_dim |
|
self.base_num_heads = base_num_heads |
|
base_head_dim = base_dim // base_num_heads |
|
|
|
|
|
|
|
|
|
if standparam: |
|
scale = float(head_dim) ** -0.5 |
|
else: |
|
|
|
|
|
|
|
|
|
base_scale = float(base_head_dim) ** -0.5 |
|
head_wm = head_dim / base_head_dim |
|
scale = base_scale / head_wm |
|
|
|
|
|
self.scale = scale |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, size): |
|
|
|
H, W = size |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
x = window_partition(x, self.window_size) |
|
x = x.view(-1, self.window_size * self.window_size, C) |
|
|
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
attn = self.softmax(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
|
|
|
|
x = x.view( |
|
-1, self.window_size, self.window_size, C |
|
) |
|
x = window_reverse(x, self.window_size, Hp, Wp) |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
return x, size |
|
|
|
|
|
class SpatialBlock(nn.Module): |
|
|
|
def __init__(self, dim, base_dim, num_heads, base_num_heads, window_size, |
|
mlp_ratio=4., qkv_bias=True, drop_path_rate=0., act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, conv_at_attn=True, conv_at_ffn=True, standparam=True): |
|
super().__init__() |
|
|
|
drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity() |
|
|
|
self.conv1 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_attn else None |
|
self.window_attn = PreNorm( |
|
norm_layer(dim), |
|
WindowAttention(dim, base_dim, num_heads, base_num_heads, window_size, qkv_bias=qkv_bias, |
|
standparam=standparam), |
|
drop_path |
|
) |
|
self.conv2 = PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1)) if conv_at_ffn else None |
|
self.ffn = PreNorm( |
|
norm_layer(dim), |
|
Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer), |
|
drop_path |
|
) |
|
|
|
def forward(self, x, size): |
|
if self.conv1: |
|
x, size = self.conv1(x, size) |
|
x, size = self.window_attn(x, size) |
|
|
|
if self.conv2: |
|
x, size = self.conv2(x, size) |
|
x, size = self.ffn(x, size) |
|
return x, size |
|
|
|
|
|
class DaViT(nn.Module): |
|
""" DaViT: Dual-Attention Transformer |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default: 224 |
|
patch_size (int | tuple(int)): Patch size. Default: 4 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
depths (tuple(int)): Number of spatial and channel blocks in different stages. Default: (1, 1, 3, 1) |
|
patch_size (tuple(int)): Patch sizes in different stages. Default: (7, 2, 2, 2) |
|
patch_stride (tuple(int)): Patch strides in different stages. Default: (4, 2, 2, 2) |
|
patch_padding (tuple(int)): Patch padding sizes in different stages. Default: (3, 0, 0, 0) |
|
patch_prenorm (tuple(bool)): Use pre-normalization or not in different stages. Default: (False, False, False, False) |
|
embed_dims (tuple(int)): Patch embedding dimension. Default: (64, 128, 192, 256) |
|
base_embed_dims (tuple(int)): Patch embedding dimension (base case for muP). Default: (64, 128, 192, 256) |
|
num_heads (tuple(int)): Number of attention heads in different layers. Default: (4, 8, 12, 16) |
|
base_num_heads (tuple(int)): Number of attention heads in different layers (base case for muP). Default: (4, 8, 12, 16) |
|
num_groups (tuple(int)): Number of groups in channel attention in different layers. Default: (3, 6, 12, 24) |
|
base_num_groups (tuple(int)): Number of groups in channel attention in different layers (base case for muP). Default: (3, 6, 12, 24) |
|
window_size (int): Window size. Default: 7 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
enable_checkpoint (bool): If True, enabling checkpoint. Default: False |
|
conv_at_attn (bool): If True, add convolution layer before attention. Default: True |
|
conv_at_ffn (bool): If True, add convolution layer before ffn. Default: True |
|
dynamic_scale (bool): If True, scale of channel attention is respect to the number of tokens. Default: True |
|
standparam (bool): Use standard parametrization or mu-parametrization. Default: True (i.e., use standard paramerization) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
in_chans=3, |
|
num_classes=1000, |
|
depths=(1, 1, 3, 1), |
|
patch_size=(7, 2, 2, 2), |
|
patch_stride=(4, 2, 2, 2), |
|
patch_padding=(3, 0, 0, 0), |
|
patch_prenorm=(False, False, False, False), |
|
embed_dims=(64, 128, 192, 256), |
|
base_embed_dims=(64, 128, 192, 256), |
|
num_heads=(3, 6, 12, 24), |
|
base_num_heads=(3, 6, 12, 24), |
|
num_groups=(3, 6, 12, 24), |
|
base_num_groups=(3, 6, 12, 24), |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, |
|
enable_checkpoint=False, |
|
conv_at_attn=True, |
|
conv_at_ffn=True, |
|
dynamic_scale=True, |
|
standparam=True |
|
): |
|
super().__init__() |
|
|
|
self.num_classes = num_classes |
|
self.embed_dims = embed_dims |
|
self.num_heads = num_heads |
|
self.num_groups = num_groups |
|
self.num_stages = len(self.embed_dims) |
|
self.enable_checkpoint = enable_checkpoint |
|
assert self.num_stages == len(self.num_heads) == len(self.num_groups) |
|
|
|
num_stages = len(embed_dims) |
|
self.img_size = img_size |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths) * 2)] |
|
|
|
depth_offset = 0 |
|
convs = [] |
|
blocks = [] |
|
for i in range(num_stages): |
|
conv_embed = ConvEmbed( |
|
patch_size=patch_size[i], |
|
stride=patch_stride[i], |
|
padding=patch_padding[i], |
|
in_chans=in_chans if i == 0 else self.embed_dims[i - 1], |
|
embed_dim=self.embed_dims[i], |
|
norm_layer=norm_layer, |
|
pre_norm=patch_prenorm[i] |
|
) |
|
convs.append(conv_embed) |
|
|
|
logger.info(f'=> Depth offset in stage {i}: {depth_offset}') |
|
block = MySequential( |
|
*[ |
|
MySequential(OrderedDict([ |
|
( |
|
'spatial_block', SpatialBlock( |
|
embed_dims[i], |
|
base_embed_dims[i], |
|
num_heads[i], |
|
base_num_heads[i], |
|
window_size, |
|
drop_path_rate=dpr[depth_offset + j * 2], |
|
qkv_bias=qkv_bias, |
|
mlp_ratio=mlp_ratio, |
|
conv_at_attn=conv_at_attn, |
|
conv_at_ffn=conv_at_ffn, |
|
standparam=standparam |
|
) |
|
), |
|
( |
|
'channel_block', ChannelBlock( |
|
embed_dims[i], |
|
base_embed_dims[i], |
|
num_groups[i], |
|
base_num_groups[i], |
|
drop_path_rate=dpr[depth_offset + j * 2 + 1], |
|
qkv_bias=qkv_bias, |
|
mlp_ratio=mlp_ratio, |
|
conv_at_attn=conv_at_attn, |
|
conv_at_ffn=conv_at_ffn, |
|
dynamic_scale=dynamic_scale, |
|
standparam=standparam |
|
) |
|
) |
|
])) for j in range(depths[i]) |
|
] |
|
) |
|
blocks.append(block) |
|
depth_offset += depths[i] * 2 |
|
|
|
self.convs = nn.ModuleList(convs) |
|
self.blocks = nn.ModuleList(blocks) |
|
|
|
self.norms = norm_layer(self.embed_dims[-1]) |
|
self.avgpool = nn.AdaptiveAvgPool1d(1) |
|
|
|
if standparam: |
|
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity() |
|
else: |
|
self.head = MuReadout(self.embed_dims[-1], num_classes, |
|
readout_zero_init=True) |
|
|
|
if torch.cuda.is_available(): |
|
self.device = torch.device(type="cuda", index=0) |
|
else: |
|
self.device = torch.device(type="cpu") |
|
|
|
def custom_init_weights(self, use_original_init=True): |
|
self.use_original_init = use_original_init |
|
logger.info('Custom init: {}'.format('original init' if self.use_original_init else 'muP init')) |
|
self.apply(self._custom_init_weights) |
|
|
|
@property |
|
def dim_out(self): |
|
return self.embed_dims[-1] |
|
|
|
def _custom_init_weights(self, m): |
|
|
|
if self.use_original_init: |
|
|
|
|
|
custom_trunc_normal_ = trunc_normal_ |
|
custom_normal_ = nn.init.normal_ |
|
else: |
|
|
|
custom_trunc_normal_ = mup.init.trunc_normal_ |
|
custom_normal_ = mup.init.normal_ |
|
|
|
|
|
if isinstance(m, MuReadout): |
|
pass |
|
elif isinstance(m, nn.Linear): |
|
custom_trunc_normal_(m.weight, std=0.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.Conv2d): |
|
custom_normal_(m.weight, std=0.02) |
|
for name, _ in m.named_parameters(): |
|
if name in ['bias']: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.weight, 1.0) |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
nn.init.constant_(m.weight, 1.0) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def _try_remap_keys(self, pretrained_dict): |
|
remap_keys = { |
|
"conv_embeds": "convs", |
|
"main_blocks": "blocks", |
|
"0.cpe.0.proj": "spatial_block.conv1.fn.dw", |
|
"0.attn": "spatial_block.window_attn.fn", |
|
"0.cpe.1.proj": "spatial_block.conv2.fn.dw", |
|
"0.mlp": "spatial_block.ffn.fn.net", |
|
"1.cpe.0.proj": "channel_block.conv1.fn.dw", |
|
"1.attn": "channel_block.channel_attn.fn", |
|
"1.cpe.1.proj": "channel_block.conv2.fn.dw", |
|
"1.mlp": "channel_block.ffn.fn.net", |
|
"0.norm1": "spatial_block.window_attn.norm", |
|
"0.norm2": "spatial_block.ffn.norm", |
|
"1.norm1": "channel_block.channel_attn.norm", |
|
"1.norm2": "channel_block.ffn.norm" |
|
} |
|
|
|
full_key_mappings = {} |
|
for k in pretrained_dict.keys(): |
|
old_k = k |
|
for remap_key in remap_keys.keys(): |
|
if remap_key in k: |
|
logger.info(f'=> Repace {remap_key} with {remap_keys[remap_key]}') |
|
k = k.replace(remap_key, remap_keys[remap_key]) |
|
|
|
full_key_mappings[old_k] = k |
|
|
|
return full_key_mappings |
|
|
|
def from_state_dict(self, pretrained_dict, pretrained_layers=[], verbose=True): |
|
model_dict = self.state_dict() |
|
stripped_key = lambda x: x[14:] if x.startswith('image_encoder.') else x |
|
full_key_mappings = self._try_remap_keys(pretrained_dict) |
|
|
|
pretrained_dict = { |
|
stripped_key(full_key_mappings[k]): v.to(self.device) for k, v in pretrained_dict.items() |
|
if stripped_key(full_key_mappings[k]) in model_dict.keys() |
|
} |
|
need_init_state_dict = {} |
|
for k, v in pretrained_dict.items(): |
|
need_init = ( |
|
k.split('.')[0] in pretrained_layers |
|
or pretrained_layers[0] == '*' |
|
) |
|
if need_init: |
|
if verbose: |
|
logger.info(f'=> init {k} from pretrained state dict') |
|
|
|
need_init_state_dict[k] = v.to(self.device) |
|
self.load_state_dict(need_init_state_dict, strict=False) |
|
|
|
def from_pretrained(self, pretrained='', pretrained_layers=[], verbose=True): |
|
if os.path.isfile(pretrained): |
|
logger.info(f'=> loading pretrained model {pretrained}') |
|
pretrained_dict = torch.load(pretrained, map_location='cpu') |
|
|
|
self.from_state_dict(pretrained_dict, pretrained_layers, verbose) |
|
|
|
def forward_features(self, x): |
|
input_size = (x.size(2), x.size(3)) |
|
for conv, block in zip(self.convs, self.blocks): |
|
x, input_size = conv(x, input_size) |
|
if self.enable_checkpoint: |
|
x, input_size = checkpoint.checkpoint(block, x, input_size) |
|
else: |
|
x, input_size = block(x, input_size) |
|
|
|
x = self.avgpool(x.transpose(1, 2)) |
|
x = torch.flatten(x, 1) |
|
x = self.norms(x) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.head(x) |
|
return x |
|
|
|
|
|
def create_encoder(config_encoder): |
|
spec = config_encoder['SPEC'] |
|
standparam = spec.get('STANDPARAM', True) |
|
|
|
if standparam: |
|
|
|
base_embed_dims = spec['DIM_EMBED'] |
|
base_num_heads = spec['NUM_HEADS'] |
|
base_num_groups = spec['NUM_GROUPS'] |
|
else: |
|
base_embed_dims = spec['BASE_DIM_EMBED'] |
|
base_num_heads = spec['BASE_NUM_HEADS'] |
|
base_num_groups = spec['BASE_NUM_GROUPS'] |
|
|
|
davit = DaViT( |
|
num_classes=config_encoder['NUM_CLASSES'], |
|
depths=spec['DEPTHS'], |
|
embed_dims=spec['DIM_EMBED'], |
|
base_embed_dims=base_embed_dims, |
|
num_heads=spec['NUM_HEADS'], |
|
base_num_heads=base_num_heads, |
|
num_groups=spec['NUM_GROUPS'], |
|
base_num_groups=base_num_groups, |
|
patch_size=spec['PATCH_SIZE'], |
|
patch_stride=spec['PATCH_STRIDE'], |
|
patch_padding=spec['PATCH_PADDING'], |
|
patch_prenorm=spec['PATCH_PRENORM'], |
|
drop_path_rate=spec['DROP_PATH_RATE'], |
|
img_size=config_encoder['IMAGE_SIZE'], |
|
window_size=spec.get('WINDOW_SIZE', 7), |
|
enable_checkpoint=spec.get('ENABLE_CHECKPOINT', False), |
|
conv_at_attn=spec.get('CONV_AT_ATTN', True), |
|
conv_at_ffn=spec.get('CONV_AT_FFN', True), |
|
dynamic_scale=spec.get('DYNAMIC_SCALE', True), |
|
standparam=standparam, |
|
) |
|
return davit |
|
|
|
|
|
def create_mup_encoder(config_encoder): |
|
def gen_config(config, wm): |
|
new_config = copy.deepcopy(config) |
|
for name in ['DIM_EMBED', 'NUM_HEADS', 'NUM_GROUPS']: |
|
base_name = 'BASE_' + name |
|
new_values = [round(base_value * wm) for base_value in |
|
config['SPEC'][base_name]] |
|
logger.info(f'config["SPEC"]["{name}"]: {new_config["SPEC"][name]} -> {new_values}') |
|
new_config['SPEC'][name] = new_values |
|
return new_config |
|
|
|
logger.info('muP: Create models and set base shapes') |
|
logger.info('=> Create model') |
|
model = create_encoder(config_encoder) |
|
|
|
logger.info('=> Create base model') |
|
base_config = gen_config(config_encoder, wm=1.0) |
|
base_model = create_encoder(base_config) |
|
|
|
logger.info('=> Create delta model') |
|
delta_config = gen_config(config_encoder, wm=2.0) |
|
delta_model = create_encoder(delta_config) |
|
|
|
logger.info('=> Set base shapes in model for training') |
|
set_base_shapes(model, base=base_model, delta=delta_model) |
|
|
|
return model |
|
|
|
|
|
@register_image_encoder |
|
def image_encoder(config_encoder, verbose, **kwargs): |
|
spec = config_encoder['SPEC'] |
|
standparam = spec.get('STANDPARAM', True) |
|
|
|
if standparam: |
|
logger.info('Create model with standard parameterization') |
|
model = create_encoder(config_encoder) |
|
model.custom_init_weights(use_original_init=True) |
|
else: |
|
logger.info('Create model with mu parameterization') |
|
model = create_mup_encoder(config_encoder) |
|
model.custom_init_weights(use_original_init=False) |
|
|
|
logger.info('Load model from pretrained checkpoint') |
|
if config_encoder['LOAD_PRETRAINED']: |
|
model.from_pretrained( |
|
config_encoder['PRETRAINED'], |
|
config_encoder['PRETRAINED_LAYERS'], |
|
verbose |
|
) |
|
|
|
return model |