metadata
base_model: openai/whisper-large-v3
datasets:
- google/fleurs
language:
- tr
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Large V3 tr Fleurs 3 - Chee Li
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Google Fleurs
type: google/fleurs
config: tr_tr
split: None
args: 'config: tr split: test'
metrics:
- type: wer
value: 6.658369632856253
name: Wer
Whisper Large V3 tr Fleurs 3 - Chee Li
This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.0941
- Wer: 6.6584
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 62
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3259 | 0.6983 | 125 | 0.2217 | 9.7386 |
0.1565 | 1.3966 | 250 | 0.1212 | 6.7906 |
0.0982 | 2.0950 | 375 | 0.0994 | 6.6273 |
0.084 | 2.7933 | 500 | 0.0941 | 6.6584 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1