Model Repository Documentation

Repository Structure Overview

The repository is organized into eight main directories, each serving a specific purpose in the pipeline:

Meta Data (1_meta_data)

Contains AMASS dataset metadata specifically focused on copycat and occlusion information, essential for motion capture applications.

MediaPipe Models (2_mediapipe_ckpts)

Houses MediaPipe's specialized models for facial landmarks and hand tracking, providing fundamental capabilities for human pose estimation.

4DHumans Framework (3_4DHumans)

Incorporates the SMPL (Skinned Multi-Person Linear Model) framework along with training artifacts. The directory includes model parameters, joint regressors, and HMR2 (Human Mesh Recovery) training checkpoints with corresponding configuration files.

SMPLhub (4_SMPLhub)

Serves as a comprehensive collection of human body models, including:

  • MANO (hand model) parameters for both left and right hands
  • SMPL models in various formats (NPZ and PKL) for male, female, and neutral body types
  • SMPLH (SMPL with detailed hand articulation)
  • SMPLX (extended SMPL model with face and hand expressions)

Additional Components

  • S3FD (5_S3FD): Contains face detection model weights
  • SyncNet (6_SyncNet): Includes audio-visual synchronization model
  • SGHM (7_SGHM): Houses ResNet50-based model weights
  • KonIQ (8_koniq): Contains pre-trained weights for image quality assessment
β”œβ”€β”€ 1_meta_data
β”‚   └── amass_copycat_occlusion_v3.pkl
β”œβ”€β”€ 2_mediapipe_ckpts
β”‚   β”œβ”€β”€ face_landmarker.task
β”‚   └── hand_landmarker.task
β”œβ”€β”€ 3_4DHumans
β”‚   β”œβ”€β”€ data
β”‚   β”‚   β”œβ”€β”€ smpl
β”‚   β”‚   β”‚   └── SMPL_NEUTRAL.pkl
β”‚   β”‚   β”œβ”€β”€ smpl_mean_params.npz
β”‚   β”‚   └── SMPL_to_J19.pkl
β”‚   └── logs
β”‚       └── train
β”‚           └── multiruns
β”‚               └── hmr2
β”‚                   └── 0
β”‚                       β”œβ”€β”€ checkpoints
β”‚                       β”‚   └── epoch=35-step=1000000.ckpt
β”‚                       β”œβ”€β”€ dataset_config.yaml
β”‚                       └── model_config.yaml
β”œβ”€β”€ 4_SMPLhub
β”‚   β”œβ”€β”€ 0_misc_files
β”‚   β”‚   └── J_regressor_coco.npy
β”‚   β”œβ”€β”€ MANO
β”‚   β”‚   └── pkl
β”‚   β”‚       β”œβ”€β”€ MANO_LEFT.pkl
β”‚   β”‚       β”œβ”€β”€ mano_mean_params.npz
β”‚   β”‚       └── MANO_RIGHT.pkl
β”‚   β”œβ”€β”€ SMPL
β”‚   β”‚   β”œβ”€β”€ basicmodel_X_lbs_10_207_0_v1.1.0_pkl
β”‚   β”‚   β”‚   β”œβ”€β”€ basicmodel_f_lbs_10_207_0_v1.1.0.pkl
β”‚   β”‚   β”‚   β”œβ”€β”€ basicmodel_m_lbs_10_207_0_v1.1.0.pkl
β”‚   β”‚   β”‚   └── basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl
β”‚   β”‚   β”œβ”€β”€ X_model_npz
β”‚   β”‚   β”‚   β”œβ”€β”€ SMPL_F_model.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ SMPL_M_model.npz
β”‚   β”‚   β”‚   └── SMPL_N_model.npz
β”‚   β”‚   └── X_pkl
β”‚   β”‚       β”œβ”€β”€ SMPL_FEMALE.pkl
β”‚   β”‚       β”œβ”€β”€ SMPL_MALE.pkl
β”‚   β”‚       └── SMPL_NEUTRAL.pkl
β”‚   β”œβ”€β”€ SMPLH
β”‚   β”‚   β”œβ”€β”€ X_npz
β”‚   β”‚   β”‚   β”œβ”€β”€ SMPLH_FEMALE.npz
β”‚   β”‚   β”‚   β”œβ”€β”€ SMPLH_MALE.npz
β”‚   β”‚   β”‚   └── SMPLH_NEUTRAL.npz
β”‚   β”‚   └── X_pkl
β”‚   β”‚       β”œβ”€β”€ SMPLH_female.pkl
β”‚   β”‚       β”œβ”€β”€ SMPLH_male.pkl
β”‚   β”‚       └── SMPLH_NEUTRAL.pkl
β”‚   └── SMPLX
β”‚       β”œβ”€β”€ mod
β”‚       β”‚   └── SMPLX_MALE_shape2019_exp2020.npz
β”‚       └── X_npz
β”‚           β”œβ”€β”€ SMPLX_FEMALE.npz
β”‚           β”œβ”€β”€ SMPLX_MALE.npz
β”‚           └── SMPLX_NEUTRAL.npz
β”œβ”€β”€ 5_S3FD
β”‚   └── sfd_face.pth
β”œβ”€β”€ 6_SyncNet
β”‚   └── syncnet_v2.model
β”œβ”€β”€ 7_SGHM
β”‚   └── SGHM-ResNet50.pth
└── 8_koniq
    └── koniq_pretrained.pkl

Create New Model Repo

Update LFS files

git lfs track "*.gif"
git lfs track "*.jpg"
git lfs track "*.png"

# 4. 使用 git lfs migrate ε‘½δ»€θ½¬ζ’ηŽ°ζœ‰ζ–‡δ»Ά
# θΏ™δΌšε°†ε·²η»ζδΊ€ηš„ζ–‡δ»Άθ½¬ζ’δΈΊ LFS 对豑
git lfs migrate import --include="*.gif,*.jpg,*.png" --everything

# 5. εΌΊεˆΆζŽ¨ι€ζ›΄ζ–°εŽηš„εŽ†ε²
git push --force origin main

Add new repo

git add .
git commit -m "init"
git push
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.