distilbert-base-multilingual-NER-naamapdam-fine-tuned
This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3852
- Precision: 0.7940
- Recall: 0.8182
- F1: 0.8059
- Accuracy: 0.9124
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3757 | 0.51 | 1000 | 0.3173 | 0.7666 | 0.7858 | 0.7761 | 0.8984 |
0.3062 | 1.03 | 2000 | 0.3020 | 0.7791 | 0.7981 | 0.7885 | 0.9026 |
0.2793 | 1.54 | 3000 | 0.2962 | 0.7827 | 0.8021 | 0.7923 | 0.9059 |
0.2755 | 2.06 | 4000 | 0.2973 | 0.7768 | 0.8122 | 0.7941 | 0.9048 |
0.2529 | 2.57 | 5000 | 0.2879 | 0.7747 | 0.8201 | 0.7968 | 0.9057 |
0.2483 | 3.08 | 6000 | 0.3025 | 0.7714 | 0.8298 | 0.7996 | 0.9079 |
0.2294 | 3.6 | 7000 | 0.2899 | 0.7877 | 0.8211 | 0.8041 | 0.9105 |
0.2252 | 4.11 | 8000 | 0.2952 | 0.7850 | 0.8185 | 0.8014 | 0.9090 |
0.2088 | 4.63 | 9000 | 0.2932 | 0.7851 | 0.8234 | 0.8038 | 0.9090 |
0.2046 | 5.14 | 10000 | 0.2998 | 0.7931 | 0.8215 | 0.8071 | 0.9117 |
0.1909 | 5.66 | 11000 | 0.3029 | 0.7925 | 0.8240 | 0.8080 | 0.9112 |
0.1857 | 6.17 | 12000 | 0.3160 | 0.7903 | 0.8228 | 0.8062 | 0.9108 |
0.1744 | 6.68 | 13000 | 0.3099 | 0.7858 | 0.8259 | 0.8054 | 0.9115 |
0.1686 | 7.2 | 14000 | 0.3199 | 0.7859 | 0.8246 | 0.8048 | 0.9097 |
0.1613 | 7.71 | 15000 | 0.3161 | 0.7941 | 0.8179 | 0.8058 | 0.9121 |
0.1538 | 8.23 | 16000 | 0.3294 | 0.7903 | 0.8221 | 0.8059 | 0.9110 |
0.1475 | 8.74 | 17000 | 0.3260 | 0.7935 | 0.8248 | 0.8089 | 0.9129 |
0.1429 | 9.25 | 18000 | 0.3378 | 0.7958 | 0.8210 | 0.8082 | 0.9130 |
0.1369 | 9.77 | 19000 | 0.3402 | 0.7905 | 0.8240 | 0.8069 | 0.9118 |
0.1302 | 10.28 | 20000 | 0.3573 | 0.7865 | 0.8269 | 0.8062 | 0.9114 |
0.1276 | 10.8 | 21000 | 0.3564 | 0.7924 | 0.8208 | 0.8063 | 0.9117 |
0.122 | 11.31 | 22000 | 0.3590 | 0.7939 | 0.8274 | 0.8103 | 0.9130 |
0.1181 | 11.83 | 23000 | 0.3660 | 0.7974 | 0.8234 | 0.8102 | 0.9132 |
0.1141 | 12.34 | 24000 | 0.3695 | 0.7921 | 0.8208 | 0.8062 | 0.9112 |
0.1118 | 12.85 | 25000 | 0.3649 | 0.7942 | 0.8188 | 0.8063 | 0.9114 |
0.1081 | 13.37 | 26000 | 0.3781 | 0.7980 | 0.8149 | 0.8064 | 0.9124 |
0.1054 | 13.88 | 27000 | 0.3800 | 0.7913 | 0.8179 | 0.8044 | 0.9120 |
0.1023 | 14.4 | 28000 | 0.3857 | 0.7942 | 0.8207 | 0.8072 | 0.9128 |
0.101 | 14.91 | 29000 | 0.3852 | 0.7940 | 0.8182 | 0.8059 | 0.9124 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.