distilbert-base-multilingual-NER-naamapdam-fine-tuned

This model is a fine-tuned version of distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3852
  • Precision: 0.7940
  • Recall: 0.8182
  • F1: 0.8059
  • Accuracy: 0.9124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3757 0.51 1000 0.3173 0.7666 0.7858 0.7761 0.8984
0.3062 1.03 2000 0.3020 0.7791 0.7981 0.7885 0.9026
0.2793 1.54 3000 0.2962 0.7827 0.8021 0.7923 0.9059
0.2755 2.06 4000 0.2973 0.7768 0.8122 0.7941 0.9048
0.2529 2.57 5000 0.2879 0.7747 0.8201 0.7968 0.9057
0.2483 3.08 6000 0.3025 0.7714 0.8298 0.7996 0.9079
0.2294 3.6 7000 0.2899 0.7877 0.8211 0.8041 0.9105
0.2252 4.11 8000 0.2952 0.7850 0.8185 0.8014 0.9090
0.2088 4.63 9000 0.2932 0.7851 0.8234 0.8038 0.9090
0.2046 5.14 10000 0.2998 0.7931 0.8215 0.8071 0.9117
0.1909 5.66 11000 0.3029 0.7925 0.8240 0.8080 0.9112
0.1857 6.17 12000 0.3160 0.7903 0.8228 0.8062 0.9108
0.1744 6.68 13000 0.3099 0.7858 0.8259 0.8054 0.9115
0.1686 7.2 14000 0.3199 0.7859 0.8246 0.8048 0.9097
0.1613 7.71 15000 0.3161 0.7941 0.8179 0.8058 0.9121
0.1538 8.23 16000 0.3294 0.7903 0.8221 0.8059 0.9110
0.1475 8.74 17000 0.3260 0.7935 0.8248 0.8089 0.9129
0.1429 9.25 18000 0.3378 0.7958 0.8210 0.8082 0.9130
0.1369 9.77 19000 0.3402 0.7905 0.8240 0.8069 0.9118
0.1302 10.28 20000 0.3573 0.7865 0.8269 0.8062 0.9114
0.1276 10.8 21000 0.3564 0.7924 0.8208 0.8063 0.9117
0.122 11.31 22000 0.3590 0.7939 0.8274 0.8103 0.9130
0.1181 11.83 23000 0.3660 0.7974 0.8234 0.8102 0.9132
0.1141 12.34 24000 0.3695 0.7921 0.8208 0.8062 0.9112
0.1118 12.85 25000 0.3649 0.7942 0.8188 0.8063 0.9114
0.1081 13.37 26000 0.3781 0.7980 0.8149 0.8064 0.9124
0.1054 13.88 27000 0.3800 0.7913 0.8179 0.8044 0.9120
0.1023 14.4 28000 0.3857 0.7942 0.8207 0.8072 0.9128
0.101 14.91 29000 0.3852 0.7940 0.8182 0.8059 0.9124

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.