factual-consistency-multilabel-classification-ja

This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3230
  • Accuracy: 0.8701

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 306 0.4850 0.7861
0.5279 2.0 612 0.4657 0.7881
0.5279 3.0 918 0.4495 0.7979
0.4707 4.0 1224 0.4361 0.8115
0.448 5.0 1530 0.4252 0.8242
0.448 6.0 1836 0.4169 0.8271
0.4321 7.0 2142 0.4098 0.8369
0.4321 8.0 2448 0.4037 0.8389
0.4208 9.0 2754 0.3989 0.8428
0.4129 10.0 3060 0.3942 0.8447
0.4129 11.0 3366 0.3905 0.8457
0.4058 12.0 3672 0.3865 0.8467
0.4058 13.0 3978 0.3833 0.8496
0.4041 14.0 4284 0.3802 0.8496
0.3992 15.0 4590 0.3774 0.8506
0.3992 16.0 4896 0.3749 0.8525
0.3922 17.0 5202 0.3726 0.8525
0.3936 18.0 5508 0.3701 0.8535
0.3936 19.0 5814 0.3679 0.8535
0.3893 20.0 6120 0.3666 0.8535
0.3893 21.0 6426 0.3640 0.8555
0.3871 22.0 6732 0.3626 0.8545
0.3856 23.0 7038 0.3607 0.8555
0.3856 24.0 7344 0.3591 0.8564
0.3836 25.0 7650 0.3572 0.8584
0.3836 26.0 7956 0.3561 0.8604
0.3801 27.0 8262 0.3543 0.8604
0.3794 28.0 8568 0.3530 0.8613
0.3794 29.0 8874 0.3517 0.8633
0.379 30.0 9180 0.3505 0.8633
0.379 31.0 9486 0.3494 0.8633
0.377 32.0 9792 0.3482 0.8623
0.3765 33.0 10098 0.3471 0.8662
0.3765 34.0 10404 0.3465 0.8652
0.3739 35.0 10710 0.3456 0.8613
0.3737 36.0 11016 0.3441 0.8662
0.3737 37.0 11322 0.3435 0.8662
0.3723 38.0 11628 0.3426 0.8662
0.3723 39.0 11934 0.3418 0.8652
0.3728 40.0 12240 0.3410 0.8652
0.3713 41.0 12546 0.3401 0.8633
0.3713 42.0 12852 0.3395 0.8662
0.3686 43.0 13158 0.3392 0.8662
0.3686 44.0 13464 0.3378 0.8643
0.3693 45.0 13770 0.3375 0.8662
0.3685 46.0 14076 0.3365 0.8643
0.3685 47.0 14382 0.3362 0.8643
0.3675 48.0 14688 0.3352 0.8633
0.3675 49.0 14994 0.3349 0.8643
0.3654 50.0 15300 0.3341 0.8652
0.3672 51.0 15606 0.3339 0.8672
0.3672 52.0 15912 0.3335 0.8682
0.3659 53.0 16218 0.3325 0.8643
0.3648 54.0 16524 0.3323 0.8662
0.3648 55.0 16830 0.3315 0.8643
0.3638 56.0 17136 0.3314 0.8643
0.3638 57.0 17442 0.3307 0.8662
0.3657 58.0 17748 0.3304 0.8662
0.3641 59.0 18054 0.3299 0.8662
0.3641 60.0 18360 0.3297 0.8672
0.3624 61.0 18666 0.3294 0.8672
0.3624 62.0 18972 0.3290 0.8662
0.3625 63.0 19278 0.3285 0.8662
0.3639 64.0 19584 0.3281 0.8662
0.3639 65.0 19890 0.3282 0.8682
0.3632 66.0 20196 0.3274 0.8652
0.3618 67.0 20502 0.3273 0.8682
0.3618 68.0 20808 0.3270 0.8672
0.3636 69.0 21114 0.3267 0.8672
0.3636 70.0 21420 0.3265 0.8662
0.3577 71.0 21726 0.3262 0.8682
0.3607 72.0 22032 0.3262 0.8682
0.3607 73.0 22338 0.3258 0.8682
0.3591 74.0 22644 0.3255 0.8662
0.3591 75.0 22950 0.3255 0.8691
0.3597 76.0 23256 0.3252 0.8691
0.3593 77.0 23562 0.3250 0.8691
0.3593 78.0 23868 0.3248 0.8682
0.3597 79.0 24174 0.3246 0.8682
0.3597 80.0 24480 0.3244 0.8672
0.3593 81.0 24786 0.3243 0.8672
0.3602 82.0 25092 0.3242 0.8682
0.3602 83.0 25398 0.3242 0.8672
0.3579 84.0 25704 0.3242 0.8711
0.3614 85.0 26010 0.3238 0.8672
0.3614 86.0 26316 0.3238 0.8711
0.359 87.0 26622 0.3237 0.8701
0.359 88.0 26928 0.3236 0.8682
0.3583 89.0 27234 0.3235 0.8682
0.3591 90.0 27540 0.3234 0.8682
0.3591 91.0 27846 0.3233 0.8691
0.3581 92.0 28152 0.3231 0.8672
0.3581 93.0 28458 0.3232 0.8701
0.3579 94.0 28764 0.3231 0.8691
0.3584 95.0 29070 0.3231 0.8701
0.3584 96.0 29376 0.3230 0.8701
0.356 97.0 29682 0.3230 0.8691
0.356 98.0 29988 0.3230 0.8691
0.3604 99.0 30294 0.3230 0.8701
0.3607 100.0 30600 0.3230 0.8701

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
15
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for liwii/factual-consistency-multilabel-classification-ja

Finetuned
(19)
this model