fc-binary-model / README.md
liwii's picture
fc-binary-model
399cea7 verified
|
raw
history blame
3.26 kB
metadata
license: apache-2.0
base_model: line-corporation/line-distilbert-base-japanese
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: fc-binary-model
    results: []

fc-binary-model

This model is a fine-tuned version of line-corporation/line-distilbert-base-japanese on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3017
  • Accuracy: 0.8730

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 306 0.3749 0.8594
0.4009 2.0 612 0.3578 0.8594
0.4009 3.0 918 0.3448 0.8613
0.3811 4.0 1224 0.3416 0.8613
0.3694 5.0 1530 0.3344 0.8613
0.3694 6.0 1836 0.3284 0.8652
0.3623 7.0 2142 0.3274 0.8633
0.3623 8.0 2448 0.3236 0.8652
0.3566 9.0 2754 0.3216 0.8633
0.349 10.0 3060 0.3174 0.8691
0.349 11.0 3366 0.3145 0.875
0.3512 12.0 3672 0.3135 0.8711
0.3512 13.0 3978 0.3102 0.8711
0.3455 14.0 4284 0.3119 0.8770
0.3427 15.0 4590 0.3100 0.875
0.3427 16.0 4896 0.3074 0.8711
0.3366 17.0 5202 0.3055 0.875
0.3385 18.0 5508 0.3068 0.875
0.3385 19.0 5814 0.3065 0.875
0.3342 20.0 6120 0.3047 0.875
0.3342 21.0 6426 0.3046 0.8770
0.3313 22.0 6732 0.3049 0.875
0.3349 23.0 7038 0.3035 0.875
0.3349 24.0 7344 0.3029 0.8730
0.3309 25.0 7650 0.3031 0.8730
0.3309 26.0 7956 0.3026 0.8711
0.326 27.0 8262 0.3026 0.875
0.3271 28.0 8568 0.3019 0.8730
0.3271 29.0 8874 0.3018 0.8730
0.3308 30.0 9180 0.3017 0.8730

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0