|
--- |
|
license: gemma |
|
library_name: peft |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: google/gemma-2b |
|
datasets: |
|
- llama-duo/synth_summarize_dataset_dedup |
|
model-index: |
|
- name: gemma2b-summarize-gemini1_5flash-2k |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gemma2b-summarize-gemini1_5flash-2k |
|
|
|
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.6449 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.9846 | 0.8571 | 3 | 3.1614 | |
|
| 2.8305 | 2.0 | 7 | 2.8875 | |
|
| 2.3403 | 2.8571 | 10 | 2.8343 | |
|
| 2.3403 | 4.0 | 14 | 2.7485 | |
|
| 2.0675 | 4.8571 | 17 | 2.6913 | |
|
| 1.8758 | 6.0 | 21 | 2.6605 | |
|
| 1.8758 | 6.8571 | 24 | 2.6488 | |
|
| 1.7659 | 8.0 | 28 | 2.6451 | |
|
| 1.7298 | 8.5714 | 30 | 2.6449 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |