chansung's picture
End of training
104881b verified
|
raw
history blame
2.28 kB
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-2b
datasets:
- llama-duo/synth_summarize_dataset_dedup
model-index:
- name: gemma2b-summarize-gemini1_5flash-64k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gemma2b-summarize-gemini1_5flash-64k
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the llama-duo/synth_summarize_dataset_dedup dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.518 | 0.9905 | 52 | 2.7709 |
| 1.1423 | 2.0 | 105 | 2.6595 |
| 1.0681 | 2.9905 | 157 | 2.6406 |
| 1.0335 | 4.0 | 210 | 2.6427 |
| 1.0079 | 4.9905 | 262 | 2.6459 |
| 0.9837 | 6.0 | 315 | 2.6574 |
| 0.966 | 6.9905 | 367 | 2.6700 |
| 0.9474 | 8.0 | 420 | 2.6799 |
| 0.9406 | 8.9905 | 472 | 2.6883 |
| 0.9245 | 10.0 | 525 | 2.6975 |
| 0.9208 | 10.9905 | 577 | 2.7079 |
| 0.9195 | 12.0 | 630 | 2.7148 |
| 0.9212 | 12.9905 | 682 | 2.7154 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1