File size: 15,446 Bytes
d2f45e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1c13a
d2f45e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1c13a
d2f45e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f1c13a
 
d2f45e6
 
 
4f1c13a
 
 
 
d2f45e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# coding=utf-8
# Copyright 2023 Mixtral AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Mixtral model configuration"""

import copy
from typing import Any, Dict

from transformers import __version__
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging

logger = logging.get_logger(__name__)

MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "mistral-ai/Mixtral-8x7B": "https://huggingface.co/mistral-ai/Mixtral-8x7B/resolve/main/config.json",
}


def recursive_diff_dict(dict_a, dict_b, config_obj=None):
    """
    Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the
    values from `dict_a` that are different from values in `dict_b`.
    """
    diff = {}
    default = config_obj.__class__().to_dict() if config_obj is not None else {}
    for key, value in dict_a.items():
        obj_value = getattr(config_obj, str(key), None)
        if (
            isinstance(obj_value, PretrainedConfig)
            and key in dict_b
            and isinstance(dict_b[key], dict)
        ):
            diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value)
            if len(diff_value) > 0:
                diff[key] = diff_value
        elif (
            key not in dict_b
            or value != dict_b[key]
            or key not in default
            or value != default[key]
        ):
            diff[key] = value
    return diff


class MixtralConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
    Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.

    [mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
    [mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`MixtralModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 14336):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
            The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
            allows sequence of up to 4096*32 tokens.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 1000000.0):
            The base period of the RoPE embeddings.
        sliding_window (`int`, *optional*, defaults to 4096):
            Sliding window attention window size. If not specified, will default to `4096`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        num_experts_per_tok (`int`, *optional*, defaults to 2):
            The number of experts to root per-token, can be also interpreted as the `top-p` routing
            parameter
        num_local_experts (`int`, *optional*, defaults to 8):
            Number of experts per Sparse MLP layer.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss. See [here]() for more details
        router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
            The aux loss factor for the total loss.

    ```python
    >>> from transformers import MixtralModel, MixtralConfig

    >>> # Initializing a Mixtral 7B style configuration
    >>> configuration = MixtralConfig()

    >>> # Initializing a model from the Mixtral 7B style configuration
    >>> model = MixtralModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "mixtral"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=14336,
        intermediate_size_residual=None,  # πŸ”
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=8,
        hidden_act="silu",
        max_position_embeddings=4096 * 32,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        rope_theta=1e6,
        sliding_window=4096,
        attention_dropout=0.0,
        num_experts_per_tok=2,
        num_local_experts=8,
        scale_factor: float = 1.0,  # πŸ”
        output_router_logits=False,
        router_aux_loss_coef=0.001,
        moe_type: str = "modulelist",  # πŸ”
        num_moe_contract_layers: int = 0,  # πŸ” the number of layers that are not converted into MoE at each side of the model
        use_attn_moe: bool = False,  # πŸ”
        top_k_attn: int = None,  # πŸ”
        attn_experts: int = None, 
        scale_factor_attn: float = None,  # πŸ”
        use_layer_wise_balance: bool = False,  # ✨ whether to fix the balance loss bug for Mixtral
        add_rescale_bias: bool = False,  # πŸ” whether to add bias to the AttentionMoE `o_proj` & MoE `down_proj` for distribution alignment
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.intermediate_size_residual = intermediate_size_residual  # πŸ”
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.sliding_window = sliding_window

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_dropout = attention_dropout

        self.num_experts_per_tok = num_experts_per_tok
        self.num_local_experts = num_local_experts
        self.scale_factor = scale_factor  # πŸ”
        self.output_router_logits = output_router_logits
        self.router_aux_loss_coef = router_aux_loss_coef
        self.moe_type = moe_type  # πŸ”
        self.num_moe_contract_layers = num_moe_contract_layers  # πŸ”

        # πŸ” for Attention MoE
        self.use_attn_moe = use_attn_moe
        self.top_k_attn = top_k_attn
        self.scale_factor_attn = scale_factor_attn
        self.attn_experts = attn_experts

        # ✨ For balance loss bugfix
        self.use_layer_wise_balance = use_layer_wise_balance

        # πŸ” for distribution alignment
        self.add_rescale_bias = add_rescale_bias

        # Attention implementation to use, if relevant.
        self._attn_implementation_internal = kwargs.pop("attn_implementation", None)

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @property
    def _attn_implementation(self):
        # This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
        if hasattr(self, "_attn_implementation_internal"):
            if self._attn_implementation_internal is None:
                # `config.attn_implementation` should never be None, for backward compatibility.
                return "flash_attention_2"
                # return "eager"
            else:
                return self._attn_implementation_internal
        else:
            return "flash_attention_2"
            # return "eager"
            


    @_attn_implementation.setter
    def _attn_implementation(self, value):
        self._attn_implementation_internal = value

    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        output = copy.deepcopy(self.__dict__)
        if hasattr(self.__class__, "model_type"):
            output["model_type"] = self.__class__.model_type
        if "_auto_class" in output:
            del output["_auto_class"]
        if "_commit_hash" in output:
            del output["_commit_hash"]
        if "_attn_implementation_internal" in output:
            del output["_attn_implementation_internal"]

        # Transformers version when serializing the model
        output["transformers_version"] = __version__

        for key, value in output.items():
            # Deal with nested configs like CLIP
            if isinstance(value, PretrainedConfig):
                value = value.to_dict()
                del value["transformers_version"]

            output[key] = value

        if hasattr(self, "quantization_config"):
            output["quantization_config"] = (
                self.quantization_config.to_dict()
                if not isinstance(self.quantization_config, dict)
                else self.quantization_config
            )

            # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
            _ = output.pop("_pre_quantization_dtype", None)

        self.dict_torch_dtype_to_str(output)

        return output

    def to_diff_dict(self) -> Dict[str, Any]:
        """
        Removes all attributes from config which correspond to the default config attributes for better readability and
        serializes to a Python dictionary.

        Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        config_dict = self.to_dict()

        # get the default config dict
        default_config_dict = PretrainedConfig().to_dict()

        # get class specific config dict
        class_config_dict = (
            self.__class__().to_dict() if not self.is_composition else {}
        )

        serializable_config_dict = {}

        # only serialize values that differ from the default config
        for key, value in config_dict.items():
            if (
                isinstance(getattr(self, key, None), PretrainedConfig)
                and key in class_config_dict
                and isinstance(class_config_dict[key], dict)
            ):
                # For nested configs we need to clean the diff recursively
                diff = recursive_diff_dict(
                    value, class_config_dict[key], config_obj=getattr(self, key, None)
                )
                if "model_type" in value:
                    # Needs to be set even if it's not in the diff
                    diff["model_type"] = value["model_type"]
                if len(diff) > 0:
                    serializable_config_dict[key] = diff
            elif (
                key not in default_config_dict
                or key == "transformers_version"
                or value != default_config_dict[key]
                or (key in class_config_dict and value != class_config_dict[key])
            ):
                serializable_config_dict[key] = value

        if hasattr(self, "quantization_config"):
            serializable_config_dict["quantization_config"] = (
                self.quantization_config.to_dict()
                if not isinstance(self.quantization_config, dict)
                else self.quantization_config
            )

            # pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
            _ = serializable_config_dict.pop("_pre_quantization_dtype", None)

        self.dict_torch_dtype_to_str(serializable_config_dict)

        if "_attn_implementation_internal" in serializable_config_dict:
            del serializable_config_dict["_attn_implementation_internal"]

        return serializable_config_dict