File size: 174,857 Bytes
d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 4f1c13a d2f45e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 |
""" PyTorch Mixtral model."""
import importlib
import inspect
import math
import warnings
from dataclasses import dataclass
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import scattermoe
import stk
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.utils.checkpoint
from megablocks import grouped_gemm_util as gg
from megablocks.layers.activation_fn import act_fn
from megablocks.layers.arguments import Arguments as MegablocksArguments
from megablocks.layers.dmlp_registry import _REGISTRY
from megablocks.layers.dmoe import ParallelDroplessMLP
from megablocks.layers.glu import memory_optimized_grouped_glu
from packaging import version
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import (
BeamSearchScorer,
ConstrainedBeamSearchScorer,
DisjunctiveConstraint,
LogitsProcessorList,
PhrasalConstraint,
QuantizedCacheConfig,
StoppingCriteriaList,
)
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation.configuration_utils import GenerationConfig, GenerationMode
from transformers.generation.utils import (
NEED_SETUP_CACHE_CLASSES_MAPPING,
QUANT_BACKEND_CLASSES_MAPPING,
GenerateOutput,
)
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_outputs import ModelOutput, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_torch_available, logging
from transformers.utils.import_utils import (
is_hqq_available,
is_quanto_available,
is_torch_fx_available,
is_torchdynamo_compiling,
)
from .configuration_mixtral import MixtralConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MixtralConfig"
parsed_torch_version_base = version.parse(version.parse(torch.__version__).base_version)
is_torch_greater_or_equal_than_1_13 = parsed_torch_version_base >= version.parse("1.13")
def _is_package_available(
pkg_name: str, return_version: bool = False
) -> Union[Tuple[bool, str], bool]:
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
package_exists = importlib.util.find_spec(pkg_name) is not None
package_version = "N/A"
if package_exists:
try:
package_version = importlib.metadata.version(pkg_name)
package_exists = True
except importlib.metadata.PackageNotFoundError:
package_exists = False
logger.debug(f"Detected {pkg_name} version {package_version}")
if return_version:
return package_exists, package_version
else:
return package_exists
def is_flash_attn_2_available():
if not is_torch_available():
return False
if not _is_package_available("flash_attn"):
return False
# Let's add an extra check to see if cuda is available
import torch
if not torch.cuda.is_available():
return False
if torch.version.cuda:
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(
"2.1.0"
)
elif torch.version.hip:
# TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(
"2.0.4"
)
else:
return False
def is_flash_attn_greater_or_equal_2_10():
if not _is_package_available("flash_attn"):
return False
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(
"2.1.0"
)
def is_flash_attn_available():
logger.warning(
"Using `is_flash_attn_available` is deprecated and will be removed in v4.38. "
"Please use `is_flash_attn_2_available` instead."
)
return is_flash_attn_2_available()
@dataclass
class AttentionMaskConverter:
"""
A utility attention mask class that allows one to:
- Create a causal 4d mask
- Create a causal 4d mask with slided window
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
key_value_length) that can be multiplied with attention scores
Examples:
```python
>>> import torch
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
>>> converter = AttentionMaskConverter(True)
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
```
Parameters:
is_causal (`bool`):
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
sliding_window (`int`, *optional*):
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
"""
is_causal: bool
sliding_window: int
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
self.is_causal = is_causal
self.sliding_window = sliding_window
if self.sliding_window is not None and self.sliding_window <= 0:
raise ValueError(
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
)
def to_causal_4d(
self,
batch_size: int,
query_length: int,
key_value_length: int,
dtype: torch.dtype,
device: Union[torch.device, "str"] = "cpu",
) -> Optional[torch.Tensor]:
"""
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
bias to upper right hand triangular matrix (causal mask).
"""
if not self.is_causal:
raise ValueError(
f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True."
)
# If shape is not cached, create a new causal mask and cache it
input_shape = (batch_size, query_length)
past_key_values_length = key_value_length - query_length
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
causal_4d_mask = None
if input_shape[-1] > 1 or self.sliding_window is not None:
causal_4d_mask = self._make_causal_mask(
input_shape,
dtype,
device=device,
past_key_values_length=past_key_values_length,
sliding_window=self.sliding_window,
)
return causal_4d_mask
def to_4d(
self,
attention_mask_2d: torch.Tensor,
query_length: int,
dtype: torch.dtype,
key_value_length: Optional[int] = None,
) -> torch.Tensor:
"""
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
causal, a causal mask will be added.
"""
input_shape = (attention_mask_2d.shape[0], query_length)
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
causal_4d_mask = None
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
if key_value_length is None:
raise ValueError(
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
)
past_key_values_length = key_value_length - query_length
causal_4d_mask = self._make_causal_mask(
input_shape,
dtype,
device=attention_mask_2d.device,
past_key_values_length=past_key_values_length,
sliding_window=self.sliding_window,
)
elif self.sliding_window is not None:
raise NotImplementedError(
"Sliding window is currently only implemented for causal masking"
)
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
expanded_attn_mask = self._expand_mask(
attention_mask_2d, dtype, tgt_len=input_shape[-1]
).to(attention_mask_2d.device)
if causal_4d_mask is not None:
expanded_attn_mask = causal_4d_mask.masked_fill(
expanded_attn_mask.bool(), torch.finfo(dtype).min
)
# expanded_attn_mask + causal_4d_mask can cause some overflow
expanded_4d_mask = expanded_attn_mask
return expanded_4d_mask
@staticmethod
def _make_causal_mask(
input_ids_shape: torch.Size,
dtype: torch.dtype,
device: torch.device,
past_key_values_length: int = 0,
sliding_window: Optional[int] = None,
):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[
torch.zeros(
tgt_len, past_key_values_length, dtype=dtype, device=device
),
mask,
],
dim=-1,
)
# add lower triangular sliding window mask if necessary
if sliding_window is not None:
diagonal = past_key_values_length - sliding_window + 1
context_mask = 1 - torch.triu(
torch.ones_like(mask, dtype=torch.int), diagonal=diagonal
)
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
return mask[None, None, :, :].expand(
bsz, 1, tgt_len, tgt_len + past_key_values_length
)
@staticmethod
def _expand_mask(
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None
):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = (
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(
inverted_mask.to(torch.bool), torch.finfo(dtype).min
)
@staticmethod
def _unmask_unattended(
expanded_mask: torch.Tensor,
attention_mask: torch.Tensor,
unmasked_value: Union[bool, float],
):
# fmt: off
"""
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
Details: https://github.com/pytorch/pytorch/issues/110213
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
`attention_mask` is [bsz, src_seq_len].
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
For example, if `attention_mask` is
```
[[0, 0, 1],
[1, 1, 1],
[0, 1, 1]]
```
and `expanded_mask` is (e.g. here left-padding case)
```
[[[[0, 0, 0],
[0, 0, 0],
[0, 0, 1]]],
[[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]],
[[[0, 0, 0],
[0, 1, 0],
[0, 1, 1]]]]
```
then the modified `expanded_mask` will be
```
[[[[1, 1, 1], <-- modified
[1, 1, 1], <-- modified
[0, 0, 1]]],
[[[1, 0, 0],
[1, 1, 0],
[1, 1, 1]]],
[[[1, 1, 1], <-- modified
[0, 1, 0],
[0, 1, 1]]]]
```
"""
# fmt: on
# Get the index of the first non-zero value for every sample in the batch.
# In the above example, indices = [[2], [0], [1]]]
tmp = torch.arange(attention_mask.shape[1], 0, -1)
indices = torch.argmax(attention_mask.cpu() * tmp, 1, keepdim=True)
# Find the batch indexes that have unattended tokens on the leftmost side (e.g. [0, 0, 1, 1, 1]), for which the first rows of the
# expanded mask will be completely unattended.
left_masked_rows = torch.where(indices > 0)[0]
if left_masked_rows.shape[0] == 0:
return expanded_mask
indices = indices[left_masked_rows]
max_len = torch.max(indices)
range_tensor = torch.arange(max_len).unsqueeze(0)
range_tensor = range_tensor.repeat(indices.size(0), 1)
# Avoid unmasking tokens at relevant target positions (on the row axis), by rather unmasking possibly several times the first row that should always be unmasked as we filtered out the batch above.
range_tensor[range_tensor >= indices] = 0
# TODO: we may drop support for 3D attention mask as the refactor from Patrick maybe dropped this case
if expanded_mask.dim() == 4:
num_masks = expanded_mask.shape[1]
if num_masks == 1:
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
mask_slice = (left_masked_rows[:, None], 0, range_tensor)
else:
# Broadcast [left_masked_rows, 1, 1], [1, num_masks, 1], [left_masked_rows, 1, max_len]
mask_slice = (
left_masked_rows[:, None, None],
torch.arange(num_masks)[None, :, None],
range_tensor[:, None, :],
)
else:
# Broadcast [left_masked_rows, 1], [left_masked_rows, max_len]
mask_slice = (left_masked_rows[:, None], range_tensor)
expanded_mask[mask_slice] = unmasked_value
return expanded_mask
def _prepare_4d_causal_attention_mask(
attention_mask: Optional[torch.Tensor],
input_shape: Union[torch.Size, Tuple, List],
inputs_embeds: torch.Tensor,
past_key_values_length: int,
sliding_window: Optional[int] = None,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`
Args:
attention_mask (`torch.Tensor` or `None`):
A 2D attention mask of shape `(batch_size, key_value_length)`
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
The input shape should be a tuple that defines `(batch_size, query_length)`.
inputs_embeds (`torch.Tensor`):
The embedded inputs as a torch Tensor.
past_key_values_length (`int`):
The length of the key value cache.
sliding_window (`int`, *optional*):
If the model uses windowed attention, a sliding window should be passed.
"""
attn_mask_converter = AttentionMaskConverter(
is_causal=True, sliding_window=sliding_window
)
key_value_length = input_shape[-1] + past_key_values_length
# 4d mask is passed through the layers
if attention_mask is not None:
attention_mask = attn_mask_converter.to_4d(
attention_mask,
input_shape[-1],
key_value_length=key_value_length,
dtype=inputs_embeds.dtype,
)
else:
attention_mask = attn_mask_converter.to_causal_4d(
input_shape[0],
input_shape[-1],
key_value_length,
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
)
return attention_mask
@dataclass
class MoeCausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) with mixture of experts outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
aux_loss for the sparse modules.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
aux_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
router_logits: Optional[Tuple[torch.FloatTensor]] = None
@property
def balance_loss(self):
return self.aux_loss
@property
def num_dropped_tokens(self):
return [torch.tensor(-1)] * 32
@property
def gate_load(self):
return [torch.tensor(-1)] * 32
@property
def gate_importance(self):
return [torch.tensor(-1)] * 32
@dataclass
class MoeModelOutputWithPast(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
router_logits: Optional[Tuple[torch.FloatTensor]] = None
attn_router_logits: Optional[Tuple[torch.FloatTensor]] = None # π
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(
inspect.signature(flash_attn_func).parameters
)
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
if not is_torch_greater_or_equal_than_1_13:
import torch.fx
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, Tuple],
num_experts: torch.Tensor = None,
top_k=2,
use_layer_wise_balance=False,
) -> torch.FloatTensor:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `gate`, should be a tuple of tensors. Shape: [batch_size, seqeunce_length, num_experts].
num_experts (`int`, *optional*):
Number of experts
Returns:
The auxiliary loss.
"""
if gate_logits is None or (isinstance(gate_logits, Iterable) and len(gate_logits) == 0):
return 0
# β¨ Here is the fix for balance loss in Mixtral.
# We should calculate the balance loss in a layer-wise manner otherwise it may lead to degenerated solutions.
if use_layer_wise_balance:
if not isinstance(gate_logits, Iterable):
gate_logits = (gate_logits,)
else:
if isinstance(gate_logits, Iterable):
gate_logits = (torch.cat(gate_logits, dim=0),)
else:
gate_logits = (gate_logits,)
all_balance_losses = []
for logits in gate_logits:
routing_weights, selected_experts = torch.topk(logits, top_k, dim=-1)
routing_weights = routing_weights.softmax(dim=-1)
# cast the expert indices to int64, otherwise one-hot encoding will fail
if selected_experts.dtype != torch.int64:
selected_experts = selected_experts.to(torch.int64)
if len(selected_experts.shape) == 2:
selected_experts = selected_experts.unsqueeze(2)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
# For a given token, determine if it was routed to a given expert.
expert_mask = torch.max(expert_mask, axis=-2).values
# cast to float32 otherwise mean will fail
expert_mask = expert_mask.to(torch.float32)
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
router_prob_per_group_and_expert = torch.mean(routing_weights, axis=-1)
# β¨ balance loss for this layer
balance_loss = torch.mean(
tokens_per_group_and_expert * router_prob_per_group_and_expert.unsqueeze(-1)
) * (num_experts**2)
all_balance_losses.append(balance_loss.reshape(1))
all_balance_losses = torch.cat(all_balance_losses).mean() # β¨
return all_balance_losses
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
)
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mixtral
class MixtralRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MixtralRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mixtral
class MixtralRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Mixtral
class MixtralAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
"""
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
self.rotary_emb = MixtralRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# fmt: off
# π Modified from DynamicCache
class MoECache(Cache):
"""
Modified from the `DynamicCache`!!!
A cache that grows dynamically as more tokens are generated.
This cache adds extra support for Attention MoE.
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
`[batch_size, num_heads, seq_len, head_dim]`.
"""
def __init__(self, num_experts: int) -> None:
# π multi-experts support
self.num_experts = num_experts
self.key_cache: List[Dict[int, torch.Tensor]] = [{} for _ in range(num_experts)]
self.value_cache: List[Dict[int, torch.Tensor]] = [{} for _ in range(num_experts)]
self._seen_tokens: List[Dict[int, int]] = [{} for _ in range(num_experts)] # Used in `generate` to keep tally of how many tokens the cache has seen
self._seen_tokens_total = 0 # π the total number of individual tokens that at least one expert has seen, this is for `get_seq_length` globally
self.attention_mask_cache: List[Dict[int, torch.BoolTensor]] = [{} for _ in range(num_experts)] # π this is a new cache for attention mask that records the state of previous tokens
def __getitem__(self, layer_idx: int, expert_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0][0].shape[2]` to get the
sequence length.
"""
if layer_idx < len(self):
if expert_idx < self.num_experts: # π
return (self.key_cache[expert_idx][layer_idx], self.value_cache[expert_idx][layer_idx])
else: # π
raise KeyError(f"Cache only has {self.num_experts} experts, attempted to access expert with index {expert_idx}")
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
"""
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
keys and values
"""
for layer_idx in range(len(self)):
for expert_idx in range(self.num_experts): # π
if layer_idx in self.key_cache[expert_idx]:
yield (self.key_cache[expert_idx][layer_idx], self.value_cache[expert_idx][layer_idx])
def __len__(self):
"""
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
to the number of layers in the model.
"""
all_index_list = [key for i in range(self.num_experts) for key in self.key_cache[i].keys()]
if len(all_index_list) == 0:
return 0
else:
return max(all_index_list) + 1 # π the maximum layer index among all experts
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
expert_idx: int, # π
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
expert_idx (`int`):
π The index of the expert to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `MoECache`.
Return:
A tuple containing the updated key and value states.
"""
if layer_idx not in self._seen_tokens[expert_idx]: # π
# Update the number of seen tokens
self._seen_tokens[expert_idx][layer_idx] = key_states.shape[-2]
# Update the cache
self.key_cache[expert_idx][layer_idx] = key_states
self.value_cache[expert_idx][layer_idx] = value_states
else: # π
# Update the number of seen tokens
self._seen_tokens[expert_idx][layer_idx] += key_states.shape[-2]
# Update the cache
self.key_cache[expert_idx][layer_idx] = torch.cat([self.key_cache[expert_idx][layer_idx], key_states], dim=-2)
self.value_cache[expert_idx][layer_idx] = torch.cat([self.value_cache[expert_idx][layer_idx], value_states], dim=-2)
return self.key_cache[expert_idx][layer_idx], self.value_cache[expert_idx][layer_idx]
def add_seen_tokens_total(self, new_token_num: int = 0) -> None:
"""π Add the number of new tokens to the total number of seen tokens."""
# THIS FUNCTION IS EXCLUSIVE FOR `MoECache`!
self._seen_tokens_total += new_token_num
def get_seq_length(self, layer_idx: Optional[int] = None, expert_idx: Optional[int] = None) -> Union[List[List[int]], int]: # π
"""Returns the sequence length of the cached states. A layer & expert index can be optionally passed."""
if layer_idx is not None and expert_idx is not None: # π return the length for specific layer & expert
if self.num_experts <= expert_idx or layer_idx not in self.key_cache[expert_idx]: # π
return 0
else:
return self.key_cache[expert_idx][layer_idx].shape[-2]
else: # π return the total number of individual tokens the cache has seen
return self._seen_tokens_total
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. MoECache does not have a maximum length."""
return None
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = None, expert_idx: Optional[int] = None) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx, expert_idx) # π
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
# TODO: support for beam search
print("MoECache, reorder_cache", beam_idx)
raise NotImplementedError
# for layer_idx in range(len(self.key_cache)):
# device = self.key_cache[layer_idx].device
# self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
# device = self.value_cache[layer_idx].device
# self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "MoECache":
raise NotImplementedError
def update_attention_mask(
self,
new_attention_mask: torch.BoolTensor,
layer_idx: int,
expert_idx: int,
) -> torch.BoolTensor:
"""
π Updates the attention mask cache with the new `attention_mask`.
Parameters:
new_attention_mask (`torch.Tensor`):
The new key states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
expert_idx (`int`):
The index of the expert to cache the states for.
Return:
A tensor containing the updated attention_mask.
"""
# Update the cache
if layer_idx not in self.attention_mask_cache[expert_idx]: # π no attention mask cached, this is the first stroke
self.attention_mask_cache[expert_idx][layer_idx] = new_attention_mask
else: # π concatenate along the seq_len dim
self.attention_mask_cache[expert_idx][layer_idx] = torch.cat([self.attention_mask_cache[expert_idx][layer_idx], new_attention_mask], dim=-1)
return self.attention_mask_cache[expert_idx][layer_idx]
# π Modified from MixtralAttention
class MixtralAttentionMoE(MixtralAttention):
def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None):
super(MixtralAttention, self).__init__() # π init using nn.Module
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self.attention_dropout = config.attention_dropout
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
# π
self.softmax = nn.Softmax(dim=-1)
self.top_k_attn = config.top_k_attn
self.attn_experts = config.attn_experts
self.scale_factor_attn = config.scale_factor_attn
self.split_ratio = self.attn_experts // self.num_key_value_heads
self.gate = nn.Linear(self.hidden_size, self.attn_experts, bias=False)
# π
self.q_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.num_key_value_groups * self.head_dim // self.split_ratio, bias=False) for _ in range(self.attn_experts)])
self.k_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
self.v_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
self.o_proj = nn.ModuleList([nn.Linear(self.num_key_value_groups * self.head_dim // self.split_ratio, self.hidden_size, bias=config.add_rescale_bias) for _ in range(self.attn_experts)]) # π (may add bias for rescaling)
self.rotary_emb = MixtralRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None, # π This should be the Tensor with shape(bsz, seqlen) that represents the padding mask
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[MoECache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
if past_key_value is not None and not isinstance(past_key_value, MoECache): # π type check
raise TypeError(
"`past_key_value` must be a `MoECache` instance for attention MoE!"
)
# print("attention_mask", attention_mask, attention_mask.shape)
device = hidden_states.device
dtype = hidden_states.dtype
bsz, q_len, hidden_dim = hidden_states.size()
hidden_states = hidden_states.reshape(-1, hidden_dim) # π flatten the dim
# π topk gating
router_logits = self.gate(hidden_states) # (bsz * q_len, num_key_value_heads)
scores = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(scores, self.top_k_attn, dim=-1) # (bsz * q_len, top_k_attn)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(dtype) # we cast back to the input dtype
# π moe selection
final_attn_output = torch.zeros_like(hidden_states).reshape(-1, hidden_dim)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.attn_experts) # (bsz * q_len, top_k_attn, num_key_value_heads)
expert_mask = expert_mask.permute(2, 1, 0) # (num_key_value_heads, top_k_attn, bsz * q_len)
# Loop over all available experts in the model and perform the computation on each expert
all_attn_weights = [] if output_attentions else None
for expert_idx in range(self.attn_experts):
# expert_mask[expert_idx]: (top_k_attn, bsz * q_len)
# idx: the topk position. (selected_num)
# top_x: token index. (selected_num)
idx, top_x = torch.nonzero(expert_mask[expert_idx], as_tuple=True)
if top_x.shape[0] == 0 and not self.training: # skip during training will lead to asynchrony among different GPUs and blocks the training!
if output_attentions:
all_attn_weights.append(None)
continue
# π Comment (DDZ): This is useless and even lags the speed, so I get it removed.
# in torch it is faster to index using lists than torch tensors
# top_x_list = top_x.tolist()
# idx_list = idx.tolist()
# π get routing info for this expert
current_batch_ids = (top_x // q_len) # batch ids for current_state, (selected_num)
each_batch_selected_token_num = torch.bincount(current_batch_ids, minlength=bsz) # (bsz)
this_q_len = each_batch_selected_token_num.max().item()
# π get the indices of each token in the hidden_state of this expert
selection_mask = torch.zeros((bsz * q_len,), device=device, dtype=torch.bool) # the selection mask for this expert (this helps specify the position to put for each token)
selection_mask[top_x] = True
selection_mask = selection_mask.reshape(bsz, q_len)
token_position_indices = torch.cumsum(selection_mask, dim=1) - 1 # the sequence ids of all tokens in the current state, (bsz, q_len)
token_position_indices = token_position_indices.flatten()
current_seq_ids = token_position_indices[top_x] # sequence ids for current_state, (selected_num)
# π initialize hidden_states for this expert
current_state = torch.zeros((bsz, this_q_len, hidden_dim), dtype=dtype, device=device)
current_state[current_batch_ids, current_seq_ids] = hidden_states[top_x] # assign tokens sparsely
# Normal Attention Forward
# ---------------------------------------------- #
query_states = self.q_proj[expert_idx](current_state) # π specify expert
key_states = self.k_proj[expert_idx](current_state) # π specify expert
value_states = self.v_proj[expert_idx](current_state) # π specify expert
query_states = query_states.view(bsz, this_q_len, self.num_key_value_groups // self.split_ratio, self.head_dim).transpose(1, 2) # π q_len -> this_q_len, num_heads -> num_key_value_groups
key_states = key_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # π q_len -> this_q_len, num_key_value_heads -> 1
value_states = value_states.view(bsz, this_q_len, 1, self.head_dim).transpose(1, 2) # π q_len -> this_q_len, num_key_value_heads -> 1
past_key_values_length = 0
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
past_key_values_length = past_key_value.get_usable_length(kv_seq_len, self.layer_idx, expert_idx) # π specify expert index
kv_seq_len += past_key_values_length
# π create position_ids for selected tokens
current_position_ids = torch.zeros((bsz, this_q_len), device=device, dtype=torch.long)
current_position_ids[current_batch_ids, current_seq_ids] = position_ids.expand(bsz, q_len).flatten()[top_x]
if top_x.shape[0] > 0: # apply only when there are tokens
cos, sin = self.rotary_emb(value_states, seq_len=current_position_ids.max().item() + 1) # π adjust the seq_len to the maximum possible value
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, current_position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, expert_idx, cache_kwargs) # π specify expert index
# repeat k/v heads if n_kv_heads < n_heads
# Note (DDZ): here the dim is expanded internally, rather than concat-repeat. (Disable for Attention MoE)
# key_states = repeat_kv(key_states, self.num_key_value_groups)
# value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) # softmax temperature
if attn_weights.size() != (bsz, self.num_key_value_groups // self.split_ratio, this_q_len, kv_seq_len): # π q_len -> this_q_len, num_heads -> num_key_value_groups
raise ValueError(f"Attention weights should be of size {(bsz, self.num_key_value_groups // self.split_ratio, this_q_len, kv_seq_len)}, but is {attn_weights.size()}")
# π create `current_attention_mask` with reduced `seq_len`
# Notice that the `attention_mask` is passed intact during both training & generation, so we need to adjust the `top_x` by `past_key_values_length`.
# However, we don't have the routing information of previous tokens, which makes it impossible to create `current_attention_mask` for previous tokens.
# So here we need an extra "attention mask cache" to record the `attention_mask` for previous tokens, and update for new tokens accordingly during generation.
current_attention_mask = torch.zeros((bsz, this_q_len), dtype=torch.bool, device=device)
if attention_mask is not None:
if past_key_values_length > 0: # π we need to exclude previous tokens
previous_seen_tokens_total = past_key_value._seen_tokens_total - q_len
temp_attention_mask = attention_mask[:, previous_seen_tokens_total:].flatten() # select along dimension 1 so that we get tokens in this iteration
else:
temp_attention_mask = attention_mask.flatten() # flatten the dim
current_attention_mask[current_batch_ids, current_seq_ids] = temp_attention_mask[top_x].bool() # assign masks sparsely
else:
current_attention_mask[current_batch_ids, current_seq_ids] = True # assign masks sparsely
# print("current_attention_mask", current_attention_mask, current_attention_mask.shape)
if past_key_value is not None: # π we need to update with cached attention mask
current_attention_mask = past_key_value.update_attention_mask(current_attention_mask, self.layer_idx, expert_idx)
# if self.layer_idx == 0 and expert_idx == 0:
# print("current_attention_mask", current_attention_mask.sum(-1), current_attention_mask.shape, current_attention_mask[0])
current_attention_mask = _prepare_4d_causal_attention_mask(
current_attention_mask,
(bsz, this_q_len),
current_state,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
if current_attention_mask.size() != (bsz, 1, this_q_len, kv_seq_len): # π q_len -> this_q_len
raise ValueError(f"Attention mask should be of size {(bsz, 1, this_q_len, kv_seq_len)}, but is {current_attention_mask.size()}")
attn_weights = attn_weights + current_attention_mask # π
# print("current_attention_mask", current_attention_mask.shape, current_attention_mask[0])
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
# if attn_output.size() != (bsz, self.num_key_value_groups // self.split_ratio, this_q_len, self.head_dim): # π q_len -> this_q_len, num_heads -> num_key_value_groups
# raise ValueError(f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is {attn_output.size()}")
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, this_q_len, self.num_key_value_groups * self.head_dim // self.split_ratio) # π q_len -> this_q_len, hidden_size -> num_key_value_groups * head_dim
attn_output = self.o_proj[expert_idx](attn_output)
# ---------------------------------------------- #
# π select & rescale the outputs by softmax scores
attn_output = attn_output[current_batch_ids, current_seq_ids] * (routing_weights[top_x, idx, None] * self.scale_factor_attn)
# attn_output = attn_output[current_batch_ids, current_seq_ids] # this line for debug only
# π add to the final outputs
final_attn_output.index_add_(0, top_x, attn_output)
if output_attentions:
all_attn_weights.append(attn_weights)
# π reshape
final_attn_output = final_attn_output.reshape(bsz, q_len, hidden_dim)
if output_attentions:
all_attn_weights = tuple(all_attn_weights)
return final_attn_output, all_attn_weights, past_key_value, router_logits # π return an extra `router_logits`
@torch.no_grad()
def from_vanilla_attention(attention: MixtralAttention, top_k_attn, scale_factor_attn):
# config
layer_idx = attention.layer_idx
config = attention.config
config.top_k_attn = top_k_attn
config.scale_factor_attn = scale_factor_attn
# init
attention_moe = MixtralAttentionMoE(config, layer_idx)
split = 1 # split the hidden_size, support split=1 --> 8/2, split=2 --> 16/4, split=4 --> 32/8
# copy weights
num_key_value_groups = attention_moe.num_key_value_groups // split
head_dim = attention_moe.head_dim
for i in range(config.num_key_value_heads * split):
indices_q_o = [j for j in range(head_dim * num_key_value_groups * i, head_dim * num_key_value_groups * (i + 1))]
indices_k_v = [j for j in range(head_dim * (i // split), head_dim * ((i // split) + 1))]
print(i, "indices_q_o", indices_q_o)
# print(i, "indices_k_v", indices_k_v)
attention_moe.q_proj[i].weight.data = attention.q_proj.weight.data[indices_q_o].clone()
attention_moe.k_proj[i].weight.data = attention.k_proj.weight.data[indices_k_v].clone()
attention_moe.v_proj[i].weight.data = attention.v_proj.weight.data[indices_k_v].clone()
attention_moe.o_proj[i].weight.data = attention.o_proj.weight.data[:, indices_q_o].clone()
return attention_moe
# fmt: on
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Mixtral
class MixtralFlashAttention2(MixtralAttention):
"""
Mixtral flash attention module. This module inherits from `MixtralAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat(
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
dim=-1,
)
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# print("attention_mask", attention_mask, attention_mask.shape)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
use_sliding_windows=False,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
use_sliding_windows (`bool`, *optional*):
Whether to activate sliding window attention.
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
if not use_sliding_windows:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(
self.config.sliding_window,
self.config.sliding_window,
),
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
if not use_sliding_windows:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
window_size=(
self.config.sliding_window,
self.config.sliding_window,
),
)
return attn_output
def _upad_input(
self, query_layer, key_layer, value_layer, attention_mask, query_length
):
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
# On the first iteration we need to properly re-create the padding mask
# by slicing it on the proper place
if kv_seq_len != attention_mask.shape[-1]:
attention_mask_num_tokens = attention_mask.shape[-1]
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask
)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class MixtralFlashAttention2MoE(MixtralFlashAttention2):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.top_k_attn = self.config.top_k_attn
self.attn_experts = self.config.attn_experts
self.scale_factor_attn = self.config.scale_factor_attn
self.split_ratio = self.attn_experts // self.num_key_value_heads
self.gate = nn.Linear(self.hidden_size, self.attn_experts, bias=False)
self.q_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.num_key_value_groups * self.head_dim // self.split_ratio, bias=False) for _ in range(self.attn_experts)])
self.k_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
self.v_proj = nn.ModuleList([nn.Linear(self.hidden_size, self.head_dim, bias=False) for _ in range(self.attn_experts)])
self.o_proj = nn.ModuleList([nn.Linear(self.num_key_value_groups * self.head_dim // self.split_ratio, self.hidden_size, bias=self.config.add_rescale_bias) for _ in range(self.attn_experts)])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
# attention_mask = kwargs.pop("padding_mask")
if past_key_value is not None and not isinstance(past_key_value, MoECache): # π type check
raise TypeError(
"`past_key_value` must be a `MoECache` instance for attention MoE!"
)
bsz, q_len, hidden_dim = hidden_states.size()
device = hidden_states.device
dtype = hidden_states.dtype
hidden_states = hidden_states.reshape(-1, hidden_dim)
# gate compute
router_logits = self.gate(hidden_states)
router_scores = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(router_scores, self.top_k_attn, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(dtype)
final_attn_output = torch.zeros_like(hidden_states).reshape(-1, hidden_dim)
expert_mask = F.one_hot(selected_experts, num_classes=self.num_heads).permute(2, 1, 0)
all_attn_weights = [] if output_attentions else None
for expert_idx in range(self.attn_experts):
idx, top_x = torch.nonzero(expert_mask[expert_idx], as_tuple=True)
# top_x_list = top_x.tolist()
# idx_list = idx.tolist()
if top_x.shape[0] == 0 and not self.training: # skip during training will lead to asynchrony among different GPUs and blocks the training!
if output_attentions:
all_attn_weights.append(None)
continue
# create position_ids for selected tokens
current_batch_ids = (top_x // q_len)
each_batch_selected_token_num = torch.bincount(current_batch_ids, minlength=bsz) # (bsz)
this_q_len = each_batch_selected_token_num.max().item()
selection_mask = torch.zeros((bsz * q_len,), device=device, dtype=torch.bool)
selection_mask[top_x] = True
selection_mask = selection_mask.reshape(bsz, q_len)
token_position_indices = torch.cumsum(selection_mask, dim=1) - 1
token_position_indices = token_position_indices.flatten()
current_seq_ids = token_position_indices[top_x]
# π initialize hidden_states for this expert
current_state = torch.zeros((bsz, this_q_len, hidden_dim), dtype=dtype, device=device)
current_state[current_batch_ids, current_seq_ids] = hidden_states[top_x] # assign tokens sparsely
# for attention forward
# expert_inputs = viewed_hidden_states[None, top_x_list].reshape(-1, self.hidden_size)
query_states = self.q_proj[expert_idx](current_state)
key_states = self.k_proj[expert_idx](current_state)
value_states = self.v_proj[expert_idx](current_state)
# seq_len = query_states.numel() // (bsz * self.num_key_value_groups * self.head_dim)
query_states = query_states.view(bsz, -1, self.num_key_value_groups // self.split_ratio, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, -1, 1, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, 1, self.head_dim).transpose(1, 2)
# for moe kv cache
past_key_values_length = 0
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
past_key_values_length = past_key_value.get_usable_length(kv_seq_len, self.layer_idx, expert_idx) # π specify expert index
kv_seq_len += past_key_values_length
current_position_ids = torch.zeros((bsz, this_q_len), device=hidden_states.device, dtype=torch.long)
current_position_ids[current_batch_ids, current_seq_ids] = position_ids.expand(bsz, q_len).flatten()[top_x]
if top_x.shape[0] > 0: # apply only when there are tokens
cos, sin = self.rotary_emb(value_states, seq_len=current_position_ids.max().item() + 1) # π adjust the seq_len to the maximum possible value
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, current_position_ids)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, expert_idx, cache_kwargs) # π specify expert index
# print("attention_mask", attention_mask.shape, attention_mask)
# for current attention mask
'''
current_attention_mask = torch.zeros((bsz, this_q_len), dtype=torch.bool, device=device)
if attention_mask is not None:
if past_key_values_length > 0: # π we need to exclude previous tokens
previous_seen_tokens_total = past_key_value._seen_tokens_total - q_len
temp_attention_mask = attention_mask[:, previous_seen_tokens_total:].flatten() # select along dimension 1 so that we get tokens in this iteration
else:
temp_attention_mask = attention_mask.flatten() # flatten the dim
current_attention_mask[current_batch_ids, current_seq_ids] = temp_attention_mask[top_x] # bug here !!!
else:
current_attention_mask[current_batch_ids, current_seq_ids] = True # assign masks sparsely
if past_key_value is not None: # π we need to update with cached attention mask
current_attention_mask = past_key_value.update_attention_mask(current_attention_mask, self.layer_idx, expert_idx)
current_attention_mask = _prepare_4d_causal_attention_mask(
current_attention_mask,
(bsz, this_q_len),
current_state,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
if current_attention_mask.size() != (bsz, 1, this_q_len, kv_seq_len): # π q_len -> this_q_len
raise ValueError(f"Attention mask should be of size {(bsz, 1, this_q_len, kv_seq_len)}, but is {current_attention_mask.size()}")
'''
# for sliding window
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
# wait for change! sliding_window=4096
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat(
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
dim=-1,
)
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# for input dtype
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj[0].weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
dropout_rate = 0.0 if not self.training else self.attention_dropout
repeat_num = query_states.shape[1]
key_states = repeat_kv(key_states, repeat_num)
value_states = repeat_kv(value_states, repeat_num)
# print("repeat_num", repeat_num)
# print("query_states shape", query_states.shape, key_states.shape, value_states.shape)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
this_q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows,
)
attn_output = attn_output.reshape(bsz, this_q_len, self.num_key_value_groups * self.head_dim // self.split_ratio).contiguous()
attn_output = self.o_proj[expert_idx](attn_output)
attn_output = attn_output[current_batch_ids, current_seq_ids] * (routing_weights[top_x, idx, None] * self.scale_factor_attn)
final_attn_output.index_add_(0, top_x, attn_output)
final_attn_output = final_attn_output.reshape(bsz, q_len, hidden_dim)
if not output_attentions:
attn_weights = None
return final_attn_output, attn_weights, past_key_value, router_logits # π return an extra `router_logits`
class MixtralFlashAttention2MoE_zt(MixtralFlashAttention2):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.top_k_attn = self.config.top_k_attn
self.scale_factor_attn = self.config.scale_factor_attn
# self.num_heads
# self.head_dim
# self.num_key_value_heads
# self.num_key_value_groups # total number of experts
assert self.top_k_attn <= self.num_key_value_groups
# assert self.top_k_attn % self.num_key_value_heads == 0
self.attn_hsz = self.hidden_size // self.num_key_value_groups * self.top_k_attn
self.kv_repeat_num = self.attn_hsz // (self.num_key_value_heads * self.head_dim)
self.simulated_attn_head_num = self.attn_hsz // self.head_dim
assert self.attn_hsz % (self.num_key_value_heads * self.head_dim) == 0
assert self.simulated_attn_head_num == self.num_heads * (self.top_k_attn / self.num_key_value_groups)
assert self.kv_repeat_num * self.num_key_value_heads == self.simulated_attn_head_num
self.gate = nn.Linear(self.hidden_size, self.num_key_value_groups, bias=False)
# tzhu: there are self.num_key_value_groups experts
# each expert has a size of self.attn_hsz
self.q_proj = nn.ModuleList(
[nn.Linear(self.hidden_size, self.attn_hsz) for _ in range(self.num_key_value_groups)]
)
self.o_proj = nn.ModuleList(
[nn.Linear(self.attn_hsz, self.hidden_size) for _ in range(self.num_key_value_groups)]
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
):
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
bsz, q_len, _ = hidden_states.size()
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
# tzhu: attn-moe on q_proj
viewed_hidden_states = hidden_states.view(bsz * q_len, self.hidden_size)
# router
router_logits = self.gate(viewed_hidden_states)
router_scores = F.softmax(router_logits, dim=-1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(router_scores, self.top_k_attn, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(hidden_states.dtype)
query_states = torch.zeros(
(bsz * q_len, self.attn_hsz),
dtype=hidden_states.dtype,
device=hidden_states.device,
)
# expert_mask: (num_experts, top_k_attn, bsz * q_len)
expert_mask = F.one_hot(selected_experts, num_classes=self.num_heads).permute(2, 1, 0)
for expert_idx in range(self.num_key_value_groups):
expert_layer = self.q_proj[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
top_x_list = top_x.tolist()
idx_list = idx.tolist()
expert_inputs = viewed_hidden_states[None, top_x_list].reshape(-1, self.hidden_size)
# inputs (-1, hidden_size) -> outputs (-1, attn_hsz)
expert_outs = expert_layer(expert_inputs) * routing_weights[top_x_list, idx_list, None] * self.scale_factor_attn
query_states.index_add_(0, top_x, expert_outs.to(query_states.dtype))
query_states = query_states.view(bsz, q_len, self.attn_hsz)
# query_states = query_states.view(
# bsz, q_len, self.num_heads, self.simulated_attn_head_num
# ).transpose(1, 2)
query_states = query_states.view(
bsz, q_len, self.simulated_attn_head_num, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
# Because the input can be padded, the absolute sequence length depends on the max position id.
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin, position_ids
)
use_sliding_windows = (
_flash_supports_window_size
and getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
)
if not _flash_supports_window_size:
logger.warning_once(
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
" make sure to upgrade flash-attn library."
)
if past_key_value is not None:
# Activate slicing cache only if the config has a value `sliding_windows` attribute
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
if (
getattr(self.config, "sliding_window", None) is not None
and kv_seq_len > self.config.sliding_window
and cache_has_contents
):
slicing_tokens = 1 - self.config.sliding_window
past_key = past_key_value[self.layer_idx][0]
past_value = past_key_value[self.layer_idx][1]
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
if past_key.shape[-2] != self.config.sliding_window - 1:
raise ValueError(
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
f" {past_key.shape}"
)
if attention_mask is not None:
attention_mask = attention_mask[:, slicing_tokens:]
attention_mask = torch.cat(
[attention_mask, torch.ones_like(attention_mask[:, -1:])],
dim=-1,
)
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.kv_repeat_num)
value_states = repeat_kv(value_states, self.kv_repeat_num)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
use_sliding_windows=use_sliding_windows,
)
attn_output = attn_output.reshape(bsz * q_len, self.attn_hsz).contiguous()
final_attn_output = torch.zeros(
(bsz * q_len, self.hidden_size),
dtype=hidden_states.dtype,
device=hidden_states.device,
)
for expert_idx in range(self.num_key_value_groups):
expert_layer = self.o_proj[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
top_x_list = top_x.tolist()
idx_list = idx.tolist()
expert_inputs = attn_output[None, top_x_list].reshape(-1, self.attn_hsz)
expert_outs = expert_layer(expert_inputs) * routing_weights[top_x_list, idx_list, None] * self.scale_factor_attn
final_attn_output.index_add_(0, top_x, expert_outs.to(final_attn_output.dtype))
final_attn_output = final_attn_output.view(bsz, q_len, self.hidden_size)
if not output_attentions:
attn_weights = None
return final_attn_output, attn_weights, past_key_value, router_logits
@torch.no_grad()
def from_vanilla_attention(attention: MixtralAttention, top_k_attn, scale_factor_attn):
# config
layer_idx = attention.layer_idx
config = attention.config
config.top_k_attn = top_k_attn
config.scale_factor_attn = scale_factor_attn
# init
attention_moe = MixtralFlashAttention2MoE(config, layer_idx)
# copy weights
num_key_value_groups = attention_moe.num_key_value_groups
head_dim = attention_moe.head_dim
for i in range(num_key_value_groups):
indices_q_o = []
for j in range(attention_moe.num_key_value_heads):
k = i + j * num_key_value_groups
indices_q_o.extend(
list(range(k * head_dim, (k + 1) * head_dim))
)
print(i, "indices_q_o", indices_q_o)
attention_moe.q_proj[i].weight.data = attention.q_proj.weight.data[indices_q_o].clone()
attention_moe.o_proj[i].weight.data = attention.o_proj.weight.data[:, indices_q_o].clone()
return attention_moe
class MixtralBLockSparseTop2MLP(nn.Module):
def __init__(self, config: MixtralConfig, ffn_dim, add_rescale_bias=False): # π
super().__init__()
self.ffn_dim = ffn_dim # π
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # gate
self.w2 = nn.Linear(
self.ffn_dim, self.hidden_dim, bias=add_rescale_bias
) # π down (may add bias for rescaling)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False) # up
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(
hidden_states
)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
MISTRAL_ATTENTION_CLASSES = {
"eager": MixtralAttention,
"flash_attention_2": MixtralFlashAttention2,
}
# π
MISTRAL_ATTENTION_MOE_CLASSES = {
"eager": MixtralAttentionMoE,
"flash_attention_2": MixtralFlashAttention2MoE,
}
class SimplifiedSparseGLU(nn.Module):
def __init__(self, args: MegablocksArguments):
super().__init__()
self.args = args
if args.bf16:
torch_dtype = torch.bfloat16
elif args.fp16:
torch_dtype = torch.float16
else:
torch_dtype = None
# gate
self.w1 = nn.Parameter(
torch.empty(
args.ffn_hidden_size * args.moe_num_experts,
args.hidden_size,
dtype=torch_dtype,
)
)
# down
self.w2 = nn.Parameter(
torch.empty(
args.ffn_hidden_size * args.moe_num_experts,
args.hidden_size,
dtype=torch_dtype,
)
)
# up
self.v1 = nn.Parameter(
torch.empty(
args.ffn_hidden_size * args.moe_num_experts,
args.hidden_size,
dtype=torch_dtype,
)
)
self.act_fn = args.activation_fn
def forward(self, x, topo):
if self.args.memory_optimized_mlp:
raise NotImplementedError(
"Memory optimized implementation not yet supported with GLU with sparse kernels."
)
# TODO (tzhu): test if OOM comes from dtensor conversion
# TODO (tzhu): return x directly to see if it still encounters OOM
# w1, v1, w2 = (
# resolve_dtensor(self.w1),
# resolve_dtensor(self.v1),
# resolve_dtensor(self.w2),
# )
# Compute the GLU.
x1 = stk.ops.sdd(x, self.w1.t(), topo)
x2 = stk.ops.sdd(x, self.v1.t(), topo)
activation_fn_out = act_fn(x1, self.act_fn)
x1 = stk.ops.mul(activation_fn_out, x2)
return stk.ops.dsd(x1, self.w2)
class SimplifiedGroupedSparseGLU(SimplifiedSparseGLU):
def forward(self, x, tokens_per_expert):
batch_sizes = tokens_per_expert.cpu().to(torch.long)
# w1, v1, w2 = (
# resolve_dtensor(self.w1),
# resolve_dtensor(self.v1),
# resolve_dtensor(self.w2),
# )
# Re-shape the weights for the grouped GEMMs.
# ne = mpu.experts_per_rank(self.args)
# w1 = self.w1.view(ne, -1, self.args.hidden_size)
# v1 = self.v1.view(ne, -1, self.args.hidden_size)
# w2 = self.w2.view(ne, -1, self.args.hidden_size)
ne = self.args.moe_num_experts
w1 = self.w1.view(ne, -1, self.args.hidden_size)
v1 = self.v1.view(ne, -1, self.args.hidden_size)
w2 = self.w2.view(ne, -1, self.args.hidden_size)
if self.args.memory_optimized_mlp:
return memory_optimized_grouped_glu(
x,
w1,
v1,
w2,
batch_sizes,
self.args.quantize_inputs_num_bits,
self.args.quantize_rematerialize_num_bits,
self.args.activation_fn,
)
# Compute the MLP.
x1 = gg.ops.gmm(x, w1, batch_sizes, trans_b=True)
x2 = gg.ops.gmm(x, v1, batch_sizes, trans_b=True)
x1 = self.act_fn(x1) * x2
return gg.ops.gmm(x1, w2, batch_sizes)
_REGISTRY["simplified_glu"] = {
"grouped": SimplifiedGroupedSparseGLU,
"sparse": SimplifiedSparseGLU,
}
class SimplifiedParallelDroplessMLP(ParallelDroplessMLP):
def forward(self, x, expert_weights, top_experts):
in_shape = x.size()
# Compute the experts.
x, tokens_per_expert = self.forward_fn(x, expert_weights, top_experts)
x = x.view(in_shape)
if self.bias is not None:
if self.args.return_bias:
return x, self.bias
return x + self.bias
return x
class MixtralSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accomodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# specialized for llama-moe-v2
self.scale_factor = config.scale_factor
self.moe_type = config.moe_type
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
if self.moe_type == "modulelist":
self.experts = nn.ModuleList(
[
MixtralBLockSparseTop2MLP(
config,
config.intermediate_size,
add_rescale_bias=config.add_rescale_bias,
)
for _ in range(self.num_experts)
] # π
)
elif self.moe_type == "megablocks":
if config.add_rescale_bias:
raise NotImplementedError(
"RescaleBias not yet supported with megablocks."
)
is_fp16 = self.gate.weight.dtype == torch.float16
is_bf16 = self.gate.weight.dtype == torch.bfloat16
args = MegablocksArguments(
hidden_size=self.hidden_dim,
ffn_hidden_size=self.ffn_dim,
moe_num_experts=self.num_experts,
moe_top_k=self.top_k,
activation_fn={"silu": F.silu}[config.hidden_act],
mlp_type="simplified_glu",
mlp_impl="sparse",
memory_optimized_mlp=False,
bias=False,
fp16=is_fp16,
bf16=is_bf16,
)
self.experts = SimplifiedParallelDroplessMLP(args)
elif self.moe_type == "scattermoe":
if config.add_rescale_bias:
raise NotImplementedError(
"RescaleBias not yet supported with scattermoe."
)
self.experts = scattermoe.mlp.GLUMLP(
input_size=self.hidden_dim,
hidden_size=self.ffn_dim,
num_experts=self.num_experts,
top_k=self.top_k,
activation={"silu": F.silu}[config.hidden_act],
)
else:
raise NotImplementedError(f"Unsupported moe_type: {self.moe_type}")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
scores = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(scores, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
if self.moe_type == "megablocks":
final_hidden_states = self.experts(
hidden_states, routing_weights, selected_experts
)
elif self.moe_type == "scattermoe":
final_hidden_states = self.experts(
hidden_states, routing_weights, selected_experts
)
else:
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim),
dtype=hidden_states.dtype,
device=hidden_states.device,
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(
selected_experts, num_classes=self.num_experts
).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
if (
top_x.shape[0] == 0 and not self.training
): # skip during training will lead to asynchrony among different GPUs and blocks the training!
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * (
routing_weights[top_x_list, idx_list, None] * self.scale_factor
)
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(
0, top_x, current_hidden_states.to(hidden_states.dtype)
)
final_hidden_states = final_hidden_states.reshape(
batch_size, sequence_length, hidden_dim
)
return final_hidden_states, router_logits
class MixtralDecoderLayer(nn.Module):
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
# π
self.is_moe = (layer_idx >= config.num_moe_contract_layers) and (
layer_idx < config.num_hidden_layers - config.num_moe_contract_layers
)
self.use_attn_moe = config.use_attn_moe
if self.use_attn_moe:
attn_class = MISTRAL_ATTENTION_MOE_CLASSES[config._attn_implementation]
else:
attn_class = MISTRAL_ATTENTION_CLASSES[config._attn_implementation]
self.self_attn = attn_class(config, layer_idx)
if self.is_moe:
self.block_sparse_moe = MixtralSparseMoeBlock(config)
self.mlp_residual = (
MixtralBLockSparseTop2MLP(config, config.intermediate_size_residual)
if config.intermediate_size_residual is not None
else None
)
else:
self.block_sparse_moe = MixtralBLockSparseTop2MLP(
config, config.intermediate_size * config.num_local_experts
)
self.mlp_residual = None
self.input_layernorm = MixtralRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.post_attention_layernorm = MixtralRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# π Self Attention
if self.use_attn_moe:
(
hidden_states,
self_attn_weights,
present_key_value,
attn_router_logits,
) = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
else:
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
attn_router_logits = None
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states_input = self.post_attention_layernorm(hidden_states)
# π
if self.is_moe:
hidden_states, router_logits = self.block_sparse_moe(hidden_states_input)
else:
hidden_states = self.block_sparse_moe(hidden_states_input)
router_logits = None
if self.mlp_residual is not None:
hidden_states += self.mlp_residual(hidden_states_input) #
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits, attn_router_logits) # π
return outputs
# Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Mixtral
class MixtralPreTrainedModel(PreTrainedModel):
config_class = MixtralConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MixtralDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Mixtral
class MixtralModel(MixtralPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
Args:
config: MixtralConfig
"""
def __init__(self, config: MixtralConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
MixtralDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_router_logits = (
output_router_logits
if output_router_logits is not None
else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError(
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
)
past_key_values_length = 0
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
if self.config.use_attn_moe: # π
past_key_values = MoECache.from_legacy_cache(past_key_values)
else: # π
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
# π add total seen tokens, this is VERY important for getting correct `past_key_values_length`!
if self.config.use_attn_moe:
past_key_values.add_seen_tokens_total(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is not None and self._use_flash_attention_2 and use_cache:
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if (
self._use_flash_attention_2 or self.config.use_attn_moe
): # π added special case for attention MoE
# 2d mask is passed through the layers
attention_mask = (
attention_mask
if (attention_mask is not None and 0 in attention_mask)
else None
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
sliding_window=self.config.sliding_window,
)
# print("attention_mask" , attention_mask)
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
all_attn_router_logits = () if output_router_logits else None # π
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs)
return custom_forward
layer_outputs: tuple = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-2],)
all_attn_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if use_legacy_cache
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_self_attns,
all_router_logits,
]
if v is not None
)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
attn_router_logits=all_attn_router_logits, # π
)
class MixtralForCausalLM(MixtralPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = MixtralModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, MixtralModel):
module.gradient_checkpointing = value
# Ignore copy
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_router_logits = (
output_router_logits
if output_router_logits is not None
else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: MoeModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
# print("MixtralForCausalLM, cross entropy loss", loss)
aux_loss = None
if output_router_logits:
valid_router_logits = tuple(
logits
for logits in (outputs.router_logits if return_dict else outputs[-2])
if logits is not None
)
aux_loss = load_balancing_loss_func(
valid_router_logits,
self.num_experts,
self.num_experts_per_tok,
use_layer_wise_balance=self.config.use_layer_wise_balance, # β¨
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss
# loss_mlp = self.router_aux_loss_coef * aux_loss
# loss = loss + loss_mlp
# print("MixtralForCausalLM, mlp aux_loss", loss_mlp)
# π for Attention MoE
#################################
valid_attn_router_logits = tuple(
logits
for logits in (
outputs.attn_router_logits if return_dict else outputs[-1]
)
if logits is not None
)
if len(valid_attn_router_logits) > 0: # exist logits that is not None
attn_aux_loss = load_balancing_loss_func(
valid_attn_router_logits,
self.config.attn_experts,
self.config.top_k_attn,
use_layer_wise_balance=self.config.use_layer_wise_balance, # β¨
)
if labels is not None:
loss += self.router_aux_loss_coef * attn_aux_loss
# loss_attn = self.router_aux_loss_coef * attn_aux_loss
# loss = loss + loss_attn
# print("MixtralForCausalLM, attn aux_loss", loss_attn)
#################################
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
# Omit tokens covered by past_key_values
if past_key_values is not None:
if isinstance(past_key_values, MoECache): # π for MoECache only
cache_length = past_key_values.get_seq_length()
past_length = past_key_values._seen_tokens_total # π
max_cache_length = past_key_values.get_max_length()
elif isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
# TODO: support for beam search
print("MixtralForCausalLM, _reorder_cache", beam_idx)
raise NotImplementedError
# reordered_past = ()
# for layer_past in past_key_values:
# reordered_past += (
# tuple(
# past_state.index_select(0, beam_idx.to(past_state.device))
# for past_state in layer_past
# ),
# )
# return reordered_past
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[
Callable[[int, torch.Tensor], List[int]]
] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](../generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config ([`~generation.GenerationConfig`], *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which has the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complements the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*):
Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
`True` under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
generating before other GPUs. Otherwise it'll be set to `False`.
assistant_model (`PreTrainedModel`, *optional*):
An assistant model that can be used to accelerate generation. The assistant model must have the exact
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
is much faster than running generation with the model you're calling generate from. As such, the
assistant model should be much smaller.
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The negative prompt needed for some processors such as CFG. The batch size must match the input batch
size. This is an experimental feature, subject to breaking API changes in future versions.
negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Attention_mask for `negative_prompt_ids`.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
tokenizer = kwargs.pop(
"tokenizer", None
) # Pull this out first, we only use it for stopping criteria
generation_config, model_kwargs = self._prepare_generation_config(
generation_config, **kwargs
)
self._validate_model_kwargs(model_kwargs.copy())
self._validate_assistant(assistant_model)
# 2. Set generation parameters if not already defined
if synced_gpus is None:
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
synced_gpus = True
else:
synced_gpus = False
logits_processor = (
logits_processor if logits_processor is not None else LogitsProcessorList()
)
stopping_criteria = (
stopping_criteria
if stopping_criteria is not None
else StoppingCriteriaList()
)
accepts_attention_mask = "attention_mask" in set(
inspect.signature(self.forward).parameters.keys()
)
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
device = inputs_tensor.device
self._prepare_special_tokens(
generation_config, kwargs_has_attention_mask, device=device
)
# decoder-only models must use left-padding for batched generation.
if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
if (
generation_config.pad_token_id is not None
and batch_size > 1
and len(inputs_tensor.shape) == 2
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id)
> 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
# 4. Define other model kwargs
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
# generating the first new token or not, and we only want to use the embeddings for the first new token)
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
model_kwargs["use_cache"] = True
else:
model_kwargs["use_cache"] = generation_config.use_cache
if (
not kwargs_has_attention_mask
and requires_attention_mask
and accepts_attention_mask
):
model_kwargs[
"attention_mask"
] = self._prepare_attention_mask_for_generation(
inputs_tensor,
generation_config.pad_token_id,
generation_config.eos_token_id,
)
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config.decoder_start_token_id,
device=inputs_tensor.device,
)
else:
input_ids = (
inputs_tensor
if model_input_name == "input_ids"
else model_kwargs.pop("input_ids")
)
if generation_config.token_healing:
input_ids = self.heal_tokens(input_ids, tokenizer)
if streamer is not None:
streamer.put(input_ids.cpu())
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = (
kwargs.get("max_length") is None
and generation_config.max_length is not None
)
has_default_min_length = (
kwargs.get("min_length") is None
and generation_config.min_length is not None
)
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
use_dynamic_cache_by_default = False
if (
generation_config.cache_implementation is not None
and model_kwargs.get("past_key_values") is not None
):
raise ValueError(
"Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a "
"Cache object) is unsupported. Please use only one of the two."
)
elif generation_config.cache_implementation is not None:
if self.config.use_attn_moe: # π
raise ValueError(
"Attention MoE doesn't support specifying the cache type! You can only use `MoECache`"
)
if (
generation_config.cache_implementation
in NEED_SETUP_CACHE_CLASSES_MAPPING
):
if (
generation_config.cache_implementation == "static"
and not self._supports_static_cache
):
raise ValueError(
"This model does not support `cache_implementation='static'`. Please check the following "
"issue: https://github.com/huggingface/transformers/issues/28981"
)
model_kwargs["past_key_values"] = self._get_cache(
generation_config.cache_implementation,
getattr(generation_config, "num_beams", 1) * batch_size,
generation_config.max_length,
)
elif generation_config.cache_implementation == "quantized":
if not self._supports_quantized_cache:
raise ValueError(
"This model does not support the quantized cache. If you want your model to support quantized "
"cache, please open an issue."
)
cache_config = (
generation_config.cache_config
if generation_config.cache_config is not None
else QuantizedCacheConfig()
)
cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend]
if cache_config.backend == "quanto" and not is_quanto_available():
raise ImportError(
"You need to install `quanto` in order to use KV cache quantization with quanto backend. "
"Please install it via with `pip install quanto`"
)
elif cache_config.backend == "HQQ" and not is_hqq_available():
raise ImportError(
"You need to install `HQQ` in order to use KV cache quantization with HQQ backend. "
"Please install it via with `pip install hqq`"
)
model_kwargs["past_key_values"] = cache_class(cache_config)
# Use DynamicCache() instance by default. This will avoid back and forth from legacy format that
# keeps copying the cache thus using much more memory
elif (
generation_config.cache_implementation is None
and self._supports_default_dynamic_cache()
):
past = model_kwargs.get("past_key_values", None)
if past is None:
if self.config.use_attn_moe: # π
model_kwargs["past_key_values"] = MoECache(
# self.config.num_key_value_heads
self.config.attn_experts
)
else: # π
model_kwargs["past_key_values"] = DynamicCache()
use_dynamic_cache_by_default = True
elif isinstance(past, tuple):
if self.config.use_attn_moe: # π
model_kwargs["past_key_values"] = MoECache.from_legacy_cache(past)
else: # π
model_kwargs["past_key_values"] = DynamicCache.from_legacy_cache(
past
)
use_dynamic_cache_by_default = True
self._validate_generated_length(
generation_config, input_ids_length, has_default_max_length
)
# 7. determine generation mode
generation_mode = generation_config.get_generation_mode(assistant_model)
if streamer is not None and (generation_config.num_beams > 1):
raise ValueError(
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
)
if self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 8. prepare distribution pre_processing samplers
prepared_logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
device=inputs_tensor.device,
model_kwargs=model_kwargs,
negative_prompt_ids=negative_prompt_ids,
negative_prompt_attention_mask=negative_prompt_attention_mask,
)
# 9. prepare stopping criteria
prepared_stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config,
stopping_criteria=stopping_criteria,
tokenizer=tokenizer,
**kwargs,
)
# 10. go into different generation modes
if generation_mode == GenerationMode.ASSISTED_GENERATION:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing assisted generate, "
f"but is {generation_config.num_return_sequences}."
)
if batch_size > 1:
raise ValueError(
"assisted generate is only supported for batch_size = 1"
)
if not model_kwargs["use_cache"]:
raise ValueError("assisted generate requires `use_cache=True`")
if generation_config.cache_implementation == "static":
raise ValueError(
"assisted generate is not supported with `static_cache`"
)
if self._is_stateful:
# In assisted generation we need the ability to confirm whether the model would pick certain tokens,
# which is not possible with stateful models (they can't reset to a previous subset of generated text)
raise ValueError(
f"assisted generation is not supported with stateful models, such as {self.__class__.__name__}"
)
# 11. Get the candidate generator, given the parameterization
candidate_generator = self._get_candidate_generator(
generation_config=generation_config,
input_ids=input_ids,
inputs_tensor=inputs_tensor,
assistant_model=assistant_model,
logits_processor=logits_processor,
model_kwargs=model_kwargs,
)
# 12. prepare logits warper (if `do_sample` is `True`)
prepared_logits_warper = (
self._get_logits_warper(
generation_config,
device=input_ids.device,
)
if generation_config.do_sample
else None
)
# 13. run assisted generate
result = self._assisted_decoding(
input_ids,
candidate_generator=candidate_generator,
logits_processor=prepared_logits_processor,
logits_warper=prepared_logits_warper,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
if not model_kwargs["use_cache"]:
raise ValueError("Contrastive search requires `use_cache=True`")
if self._is_stateful:
# Just like assisted generation, we need to be able to rollback to a previous state (see comment above)
raise ValueError(
f"contrastive search is not supported with stateful models, such as {self.__class__.__name__}"
)
result = self._contrastive_search(
input_ids,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# 11. prepare logits warper
prepared_logits_warper = (
self._get_logits_warper(generation_config, device=input_ids.device)
if generation_config.do_sample
else None
)
# 12. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
result = self._sample(
input_ids,
logits_processor=prepared_logits_processor,
logits_warper=prepared_logits_warper,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode in (
GenerationMode.BEAM_SAMPLE,
GenerationMode.BEAM_SEARCH,
):
# 11. prepare logits warper
prepared_logits_warper = (
self._get_logits_warper(generation_config, device=input_ids.device)
if generation_config.do_sample
else None
)
# 12. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# 13. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 14. run beam sample
result = self._beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
logits_warper=prepared_logits_warper,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
num_beam_groups=generation_config.num_beam_groups,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
result = self._group_beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0
):
typeerror()
for word_ids in generation_config.force_words_ids:
if isinstance(word_ids[0], list):
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(
not isinstance(token_ids, list) for token_ids in word_ids
):
typeerror()
if any(
any(
(not isinstance(token_id, int) or token_id < 0)
for token_id in token_ids
)
for token_ids in word_ids
):
typeerror()
constraint = DisjunctiveConstraint(word_ids)
else:
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(
(not isinstance(token_id, int) or token_id < 0)
for token_id in word_ids
):
typeerror()
constraint = PhrasalConstraint(word_ids)
final_constraints.append(constraint)
# 11. prepare beam search scorer
constrained_beam_scorer = ConstrainedBeamSearchScorer(
constraints=final_constraints,
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
result = self._constrained_beam_search(
input_ids,
constrained_beam_scorer=constrained_beam_scorer,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
# Convert to legacy cache if needed
if use_dynamic_cache_by_default and generation_config.return_legacy_cache:
if isinstance(result, ModelOutput) and hasattr(result, "past_key_values"):
if isinstance(result.past_key_values, DynamicCache):
result.past_key_values = result.past_key_values.to_legacy_cache()
return result
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mixtral, LLAMA->MIXTRAL
class MixtralForSequenceClassification(MixtralPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = MixtralModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError(
"Cannot handle batch sizes > 1 if no padding token is defined."
)
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|