|
--- |
|
language: |
|
- en |
|
- zh |
|
license: apache-2.0 |
|
tags: |
|
- vision |
|
- image-text-to-text |
|
- transformers.js |
|
datasets: |
|
- lmms-lab/LLaVA-OneVision-Data |
|
pipeline_tag: image-text-to-text |
|
inference: false |
|
arxiv: 2408.03326 |
|
library_name: transformers |
|
--- |
|
# LLaVA-Onevision Model Card |
|
|
|
![image/png](llava_onevision_arch.png) |
|
|
|
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-4AtYjR8UMtCALV0AswU1kiNkWCLTALT?usp=sharing) |
|
|
|
Below is the model card of 0.5B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find [here](https://huggingface.co/lmms-lab/llava-onevision-qwen2-0.5b-si). |
|
|
|
|
|
|
|
## Model details |
|
|
|
**Model type:** |
|
LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data. |
|
LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer |
|
vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning |
|
across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario |
|
capabilities are demonstrated through task transfer from images to videos. |
|
|
|
**Model date:** |
|
LLaVA-Onevision-0.5-ov was added in August 2024. |
|
|
|
**Paper or resources for more information:** |
|
https://llava-vl.github.io/ |
|
|
|
- **Architecture:** SO400M + Qwen2 |
|
- **Pretraining Stage:** LCS-558K, 1 epoch, projector |
|
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model |
|
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model |
|
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model |
|
- **Precision:** bfloat16 |
|
|
|
|
|
## How to use the model |
|
|
|
First, make sure to have `transformers` installed from [branch](https://github.com/huggingface/transformers/pull/32673) or `transformers >= 4.45.0`. |
|
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applying chat template: |
|
|
|
### Using `pipeline`: |
|
|
|
Below we used [`"llava-hf/llava-onevision-qwen2-0.5b-ov-hf"`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) checkpoint. |
|
|
|
```python |
|
from transformers import pipeline |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoProcessor |
|
|
|
|
|
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline("image-to-text", model=model_id) |
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt |
|
# Each value in "content" has to be a list of dicts with types ("text", "image") |
|
conversation = [ |
|
{ |
|
|
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"}, |
|
{"type": "image"}, |
|
], |
|
}, |
|
] |
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
|
|
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200}) |
|
print(outputs) |
|
>>> {"generated_text": "user\n\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nassistant\nLava"} |
|
``` |
|
|
|
### Using pure `transformers`: |
|
|
|
Below is an example script to run generation in `float16` precision on a GPU device: |
|
|
|
```python |
|
import requests |
|
from PIL import Image |
|
|
|
import torch |
|
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration |
|
|
|
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" |
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
).to(0) |
|
|
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt |
|
# Each value in "content" has to be a list of dicts with types ("text", "image") |
|
conversation = [ |
|
{ |
|
|
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": "What are these?"}, |
|
{"type": "image"}, |
|
], |
|
}, |
|
] |
|
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) |
|
|
|
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
raw_image = Image.open(requests.get(image_file, stream=True).raw) |
|
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16) |
|
|
|
output = model.generate(**inputs, max_new_tokens=200, do_sample=False) |
|
print(processor.decode(output[0][2:], skip_special_tokens=True)) |
|
``` |
|
|
|
### Model optimization |
|
|
|
#### 4-bit quantization through `bitsandbytes` library |
|
|
|
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ load_in_4bit=True |
|
) |
|
``` |
|
|
|
#### Use Flash-Attention 2 to further speed-up generation |
|
|
|
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: |
|
|
|
```diff |
|
model = LlavaOnevisionForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
+ use_flash_attention_2=True |
|
).to(0) |
|
``` |
|
|
|
|
|
### Usage w/ Transformers.js |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: |
|
```bash |
|
npm i @huggingface/transformers |
|
``` |
|
|
|
**Example:** Multi-round conversations w/ PKV caching |
|
```js |
|
import { AutoProcessor, AutoTokenizer, LlavaOnevisionForConditionalGeneration, RawImage } from '@huggingface/transformers'; |
|
|
|
// Load tokenizer, processor and model |
|
const model_id = 'llava-hf/llava-onevision-qwen2-0.5b-ov-hf'; |
|
|
|
const tokenizer = await AutoTokenizer.from_pretrained(model_id); |
|
const processor = await AutoProcessor.from_pretrained(model_id); |
|
const model = await LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, { |
|
dtype: { |
|
embed_tokens: 'fp16', // or 'fp32' or 'q8' |
|
vision_encoder: 'fp16', // or 'fp32' or 'q8' |
|
decoder_model_merged: 'q4', // or 'q8' |
|
}, |
|
// device: 'webgpu', |
|
}); |
|
|
|
// Prepare text inputs |
|
const prompt = 'What does the text say?'; |
|
const messages = [ |
|
{ role: 'system', content: 'Answer the question.' }, |
|
{ role: 'user', content: `<image>\n${prompt}` } |
|
] |
|
const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true }); |
|
const text_inputs = tokenizer(text); |
|
|
|
// Prepare vision inputs |
|
const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png'; |
|
const image = await RawImage.fromURL(url); |
|
const vision_inputs = await processor(image); |
|
|
|
// Generate response |
|
const { past_key_values, sequences } = await model.generate({ |
|
...text_inputs, |
|
...vision_inputs, |
|
do_sample: false, |
|
max_new_tokens: 64, |
|
return_dict_in_generate: true, |
|
}); |
|
|
|
// Decode output |
|
const answer = tokenizer.decode( |
|
sequences.slice(0, [text_inputs.input_ids.dims[1], null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(answer); |
|
// The text says "small but mighty" in a playful font. |
|
|
|
const new_messages = [ |
|
...messages, |
|
{ role: 'assistant', content: answer }, |
|
{ role: 'user', content: 'How does the text correlate to the context of the image?' } |
|
] |
|
const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true }); |
|
const new_text_inputs = tokenizer(new_text); |
|
|
|
// Generate another response |
|
const output = await model.generate({ |
|
...new_text_inputs, |
|
past_key_values, |
|
do_sample: false, |
|
max_new_tokens: 256, |
|
}); |
|
const new_answer = tokenizer.decode( |
|
output.slice(0, [new_text_inputs.input_ids.dims[1], null]), |
|
{ skip_special_tokens: true }, |
|
); |
|
console.log(new_answer); |
|
// The text "small but mighty" is likely a playful or humorous reference to the image of the blue mouse with the orange dumbbell. It could be used as a motivational phrase or a playful way to express the idea that even small things can be impressive or powerful. |
|
``` |
|
|
|
# Citation |
|
``` |
|
@misc{li2024llavaonevisioneasyvisualtask, |
|
title={LLaVA-OneVision: Easy Visual Task Transfer}, |
|
author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li}, |
|
year={2024}, |
|
eprint={2408.03326}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2408.03326}, |
|
} |
|
``` |