RaushanTurganbay's picture
Update pipeline example
1be2b8f verified
---
language:
- en
- zh
license: apache-2.0
tags:
- vision
- image-text-to-text
datasets:
- lmms-lab/LLaVA-OneVision-Data
pipeline_tag: image-text-to-text
arxiv: 2408.03326
---
# LLaVA-Onevision Model Card
![image/png](llava_onevision_arch.png)
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-4AtYjR8UMtCALV0AswU1kiNkWCLTALT?usp=sharing)
Below is the model card of 72B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find [here](https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov).
## Model details
**Model type:**
LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data.
LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer
vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning
across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario
capabilities are demonstrated through task transfer from images to videos.
**Model date:**
LLaVA-Onevision-72b-si was added in August 2024.
**Paper or resources for more information:**
https://llava-vl.github.io/
- **Architecture:** SO400M + Qwen2
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16
## How to use the model
First, make sure to have `transformers` installed from [branch](https://github.com/huggingface/transformers/pull/32673) or `transformers >= 4.45.0`.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applyong chat template:
### Using `pipeline`:
Below we used [`"llava-hf/llava-onevision-qwen2-72b-ov-hf"`](https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf) checkpoint.
```python
from transformers import pipeline
pipe = pipeline("image-text-to-text", model="llava-onevision-qwen2-72b-ov-hf")
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
],
},
]
out = pipe(text=messages, max_new_tokens=20)
print(out)
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
```
### Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
model_id = "llava-hf/llava-onevision-qwen2-72b-ov-hf"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What are these?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
# Citation
```
@misc{li2024llavaonevisioneasyvisualtask,
title={LLaVA-OneVision: Easy Visual Task Transfer},
author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li},
year={2024},
eprint={2408.03326},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.03326},
}
```