ember-v1 / README.md
w95's picture
Update README.md
a67ed1f
|
raw
history blame
66.2 kB
---
tags:
- mteb
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: mit
model-index:
- name: ember_v1
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.05970149253731
- type: ap
value: 38.76045348512767
- type: f1
value: 69.8824007294685
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.977
- type: ap
value: 88.63507587170176
- type: f1
value: 91.9524133311038
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 47.938
- type: f1
value: 47.58273047536129
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.252
- type: map_at_10
value: 56.567
- type: map_at_100
value: 57.07600000000001
- type: map_at_1000
value: 57.08
- type: map_at_3
value: 52.394
- type: map_at_5
value: 55.055
- type: mrr_at_1
value: 42.39
- type: mrr_at_10
value: 57.001999999999995
- type: mrr_at_100
value: 57.531
- type: mrr_at_1000
value: 57.535000000000004
- type: mrr_at_3
value: 52.845
- type: mrr_at_5
value: 55.47299999999999
- type: ndcg_at_1
value: 41.252
- type: ndcg_at_10
value: 64.563
- type: ndcg_at_100
value: 66.667
- type: ndcg_at_1000
value: 66.77
- type: ndcg_at_3
value: 56.120000000000005
- type: ndcg_at_5
value: 60.889
- type: precision_at_1
value: 41.252
- type: precision_at_10
value: 8.982999999999999
- type: precision_at_100
value: 0.989
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.309
- type: precision_at_5
value: 15.690000000000001
- type: recall_at_1
value: 41.252
- type: recall_at_10
value: 89.82900000000001
- type: recall_at_100
value: 98.86200000000001
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 66.927
- type: recall_at_5
value: 78.45
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.5799968717232
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.142844164856136
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 64.45997990276463
- type: mrr
value: 77.85560392208592
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 86.38299310075898
- type: cos_sim_spearman
value: 85.81038898286454
- type: euclidean_pearson
value: 84.28002556389774
- type: euclidean_spearman
value: 85.80315990248238
- type: manhattan_pearson
value: 83.9755390675032
- type: manhattan_spearman
value: 85.30435335611396
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 87.89935064935065
- type: f1
value: 87.87886687103833
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.84335510371379
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.377963093857005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.557
- type: map_at_10
value: 44.501000000000005
- type: map_at_100
value: 46.11
- type: map_at_1000
value: 46.232
- type: map_at_3
value: 40.711000000000006
- type: map_at_5
value: 42.937
- type: mrr_at_1
value: 40.916000000000004
- type: mrr_at_10
value: 51.317
- type: mrr_at_100
value: 52.003
- type: mrr_at_1000
value: 52.044999999999995
- type: mrr_at_3
value: 48.569
- type: mrr_at_5
value: 50.322
- type: ndcg_at_1
value: 40.916000000000004
- type: ndcg_at_10
value: 51.353
- type: ndcg_at_100
value: 56.762
- type: ndcg_at_1000
value: 58.555
- type: ndcg_at_3
value: 46.064
- type: ndcg_at_5
value: 48.677
- type: precision_at_1
value: 40.916000000000004
- type: precision_at_10
value: 9.927999999999999
- type: precision_at_100
value: 1.592
- type: precision_at_1000
value: 0.20600000000000002
- type: precision_at_3
value: 22.078999999999997
- type: precision_at_5
value: 16.08
- type: recall_at_1
value: 32.557
- type: recall_at_10
value: 63.942
- type: recall_at_100
value: 86.436
- type: recall_at_1000
value: 97.547
- type: recall_at_3
value: 48.367
- type: recall_at_5
value: 55.818
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.106
- type: map_at_10
value: 42.55
- type: map_at_100
value: 43.818
- type: map_at_1000
value: 43.952999999999996
- type: map_at_3
value: 39.421
- type: map_at_5
value: 41.276
- type: mrr_at_1
value: 39.936
- type: mrr_at_10
value: 48.484
- type: mrr_at_100
value: 49.123
- type: mrr_at_1000
value: 49.163000000000004
- type: mrr_at_3
value: 46.221000000000004
- type: mrr_at_5
value: 47.603
- type: ndcg_at_1
value: 39.936
- type: ndcg_at_10
value: 48.25
- type: ndcg_at_100
value: 52.674
- type: ndcg_at_1000
value: 54.638
- type: ndcg_at_3
value: 44.05
- type: ndcg_at_5
value: 46.125
- type: precision_at_1
value: 39.936
- type: precision_at_10
value: 9.096
- type: precision_at_100
value: 1.473
- type: precision_at_1000
value: 0.19499999999999998
- type: precision_at_3
value: 21.295
- type: precision_at_5
value: 15.121
- type: recall_at_1
value: 32.106
- type: recall_at_10
value: 58.107
- type: recall_at_100
value: 76.873
- type: recall_at_1000
value: 89.079
- type: recall_at_3
value: 45.505
- type: recall_at_5
value: 51.479
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.513
- type: map_at_10
value: 54.571999999999996
- type: map_at_100
value: 55.579
- type: map_at_1000
value: 55.626
- type: map_at_3
value: 51.127
- type: map_at_5
value: 53.151
- type: mrr_at_1
value: 47.398
- type: mrr_at_10
value: 57.82000000000001
- type: mrr_at_100
value: 58.457
- type: mrr_at_1000
value: 58.479000000000006
- type: mrr_at_3
value: 55.32899999999999
- type: mrr_at_5
value: 56.89999999999999
- type: ndcg_at_1
value: 47.398
- type: ndcg_at_10
value: 60.599000000000004
- type: ndcg_at_100
value: 64.366
- type: ndcg_at_1000
value: 65.333
- type: ndcg_at_3
value: 54.98
- type: ndcg_at_5
value: 57.874
- type: precision_at_1
value: 47.398
- type: precision_at_10
value: 9.806
- type: precision_at_100
value: 1.2590000000000001
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 24.619
- type: precision_at_5
value: 16.878
- type: recall_at_1
value: 41.513
- type: recall_at_10
value: 74.91799999999999
- type: recall_at_100
value: 90.96
- type: recall_at_1000
value: 97.923
- type: recall_at_3
value: 60.013000000000005
- type: recall_at_5
value: 67.245
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.319
- type: map_at_10
value: 35.766999999999996
- type: map_at_100
value: 36.765
- type: map_at_1000
value: 36.829
- type: map_at_3
value: 32.888
- type: map_at_5
value: 34.538999999999994
- type: mrr_at_1
value: 28.249000000000002
- type: mrr_at_10
value: 37.766
- type: mrr_at_100
value: 38.62
- type: mrr_at_1000
value: 38.667
- type: mrr_at_3
value: 35.009
- type: mrr_at_5
value: 36.608000000000004
- type: ndcg_at_1
value: 28.249000000000002
- type: ndcg_at_10
value: 41.215
- type: ndcg_at_100
value: 46.274
- type: ndcg_at_1000
value: 48.007
- type: ndcg_at_3
value: 35.557
- type: ndcg_at_5
value: 38.344
- type: precision_at_1
value: 28.249000000000002
- type: precision_at_10
value: 6.429
- type: precision_at_100
value: 0.9480000000000001
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 15.179
- type: precision_at_5
value: 10.734
- type: recall_at_1
value: 26.319
- type: recall_at_10
value: 56.157999999999994
- type: recall_at_100
value: 79.65
- type: recall_at_1000
value: 92.73
- type: recall_at_3
value: 40.738
- type: recall_at_5
value: 47.418
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.485
- type: map_at_10
value: 27.400999999999996
- type: map_at_100
value: 28.665000000000003
- type: map_at_1000
value: 28.79
- type: map_at_3
value: 24.634
- type: map_at_5
value: 26.313
- type: mrr_at_1
value: 23.134
- type: mrr_at_10
value: 32.332
- type: mrr_at_100
value: 33.318
- type: mrr_at_1000
value: 33.384
- type: mrr_at_3
value: 29.664
- type: mrr_at_5
value: 31.262
- type: ndcg_at_1
value: 23.134
- type: ndcg_at_10
value: 33.016
- type: ndcg_at_100
value: 38.763
- type: ndcg_at_1000
value: 41.619
- type: ndcg_at_3
value: 28.017999999999997
- type: ndcg_at_5
value: 30.576999999999998
- type: precision_at_1
value: 23.134
- type: precision_at_10
value: 6.069999999999999
- type: precision_at_100
value: 1.027
- type: precision_at_1000
value: 0.14200000000000002
- type: precision_at_3
value: 13.599
- type: precision_at_5
value: 9.975000000000001
- type: recall_at_1
value: 18.485
- type: recall_at_10
value: 45.39
- type: recall_at_100
value: 69.876
- type: recall_at_1000
value: 90.023
- type: recall_at_3
value: 31.587
- type: recall_at_5
value: 38.164
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.676
- type: map_at_10
value: 41.785
- type: map_at_100
value: 43.169000000000004
- type: map_at_1000
value: 43.272
- type: map_at_3
value: 38.462
- type: map_at_5
value: 40.32
- type: mrr_at_1
value: 37.729
- type: mrr_at_10
value: 47.433
- type: mrr_at_100
value: 48.303000000000004
- type: mrr_at_1000
value: 48.337
- type: mrr_at_3
value: 45.011
- type: mrr_at_5
value: 46.455
- type: ndcg_at_1
value: 37.729
- type: ndcg_at_10
value: 47.921
- type: ndcg_at_100
value: 53.477
- type: ndcg_at_1000
value: 55.300000000000004
- type: ndcg_at_3
value: 42.695
- type: ndcg_at_5
value: 45.175
- type: precision_at_1
value: 37.729
- type: precision_at_10
value: 8.652999999999999
- type: precision_at_100
value: 1.336
- type: precision_at_1000
value: 0.168
- type: precision_at_3
value: 20.18
- type: precision_at_5
value: 14.302000000000001
- type: recall_at_1
value: 30.676
- type: recall_at_10
value: 60.441
- type: recall_at_100
value: 83.37
- type: recall_at_1000
value: 95.092
- type: recall_at_3
value: 45.964
- type: recall_at_5
value: 52.319
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.978
- type: map_at_10
value: 35.926
- type: map_at_100
value: 37.341
- type: map_at_1000
value: 37.445
- type: map_at_3
value: 32.748
- type: map_at_5
value: 34.207
- type: mrr_at_1
value: 31.163999999999998
- type: mrr_at_10
value: 41.394
- type: mrr_at_100
value: 42.321
- type: mrr_at_1000
value: 42.368
- type: mrr_at_3
value: 38.964999999999996
- type: mrr_at_5
value: 40.135
- type: ndcg_at_1
value: 31.163999999999998
- type: ndcg_at_10
value: 42.191
- type: ndcg_at_100
value: 48.083999999999996
- type: ndcg_at_1000
value: 50.21
- type: ndcg_at_3
value: 36.979
- type: ndcg_at_5
value: 38.823
- type: precision_at_1
value: 31.163999999999998
- type: precision_at_10
value: 7.968
- type: precision_at_100
value: 1.2550000000000001
- type: precision_at_1000
value: 0.16199999999999998
- type: precision_at_3
value: 18.075
- type: precision_at_5
value: 12.626000000000001
- type: recall_at_1
value: 24.978
- type: recall_at_10
value: 55.410000000000004
- type: recall_at_100
value: 80.562
- type: recall_at_1000
value: 94.77600000000001
- type: recall_at_3
value: 40.359
- type: recall_at_5
value: 45.577
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.812166666666666
- type: map_at_10
value: 36.706916666666665
- type: map_at_100
value: 37.94016666666666
- type: map_at_1000
value: 38.05358333333333
- type: map_at_3
value: 33.72408333333334
- type: map_at_5
value: 35.36508333333333
- type: mrr_at_1
value: 31.91516666666667
- type: mrr_at_10
value: 41.09716666666666
- type: mrr_at_100
value: 41.931916666666666
- type: mrr_at_1000
value: 41.98458333333333
- type: mrr_at_3
value: 38.60183333333333
- type: mrr_at_5
value: 40.031916666666675
- type: ndcg_at_1
value: 31.91516666666667
- type: ndcg_at_10
value: 42.38725
- type: ndcg_at_100
value: 47.56291666666667
- type: ndcg_at_1000
value: 49.716499999999996
- type: ndcg_at_3
value: 37.36491666666667
- type: ndcg_at_5
value: 39.692166666666665
- type: precision_at_1
value: 31.91516666666667
- type: precision_at_10
value: 7.476749999999999
- type: precision_at_100
value: 1.1869166666666668
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 17.275249999999996
- type: precision_at_5
value: 12.25825
- type: recall_at_1
value: 26.812166666666666
- type: recall_at_10
value: 54.82933333333333
- type: recall_at_100
value: 77.36508333333333
- type: recall_at_1000
value: 92.13366666666667
- type: recall_at_3
value: 40.83508333333334
- type: recall_at_5
value: 46.85083333333334
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.352999999999998
- type: map_at_10
value: 33.025999999999996
- type: map_at_100
value: 33.882
- type: map_at_1000
value: 33.983999999999995
- type: map_at_3
value: 30.995
- type: map_at_5
value: 32.113
- type: mrr_at_1
value: 28.834
- type: mrr_at_10
value: 36.14
- type: mrr_at_100
value: 36.815
- type: mrr_at_1000
value: 36.893
- type: mrr_at_3
value: 34.305
- type: mrr_at_5
value: 35.263
- type: ndcg_at_1
value: 28.834
- type: ndcg_at_10
value: 37.26
- type: ndcg_at_100
value: 41.723
- type: ndcg_at_1000
value: 44.314
- type: ndcg_at_3
value: 33.584
- type: ndcg_at_5
value: 35.302
- type: precision_at_1
value: 28.834
- type: precision_at_10
value: 5.736
- type: precision_at_100
value: 0.876
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 14.468
- type: precision_at_5
value: 9.847
- type: recall_at_1
value: 25.352999999999998
- type: recall_at_10
value: 47.155
- type: recall_at_100
value: 68.024
- type: recall_at_1000
value: 87.26899999999999
- type: recall_at_3
value: 37.074
- type: recall_at_5
value: 41.352
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.845
- type: map_at_10
value: 25.556
- type: map_at_100
value: 26.787
- type: map_at_1000
value: 26.913999999999998
- type: map_at_3
value: 23.075000000000003
- type: map_at_5
value: 24.308
- type: mrr_at_1
value: 21.714
- type: mrr_at_10
value: 29.543999999999997
- type: mrr_at_100
value: 30.543
- type: mrr_at_1000
value: 30.618000000000002
- type: mrr_at_3
value: 27.174
- type: mrr_at_5
value: 28.409000000000002
- type: ndcg_at_1
value: 21.714
- type: ndcg_at_10
value: 30.562
- type: ndcg_at_100
value: 36.27
- type: ndcg_at_1000
value: 39.033
- type: ndcg_at_3
value: 26.006
- type: ndcg_at_5
value: 27.843
- type: precision_at_1
value: 21.714
- type: precision_at_10
value: 5.657
- type: precision_at_100
value: 1.0
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 12.4
- type: precision_at_5
value: 8.863999999999999
- type: recall_at_1
value: 17.845
- type: recall_at_10
value: 41.72
- type: recall_at_100
value: 67.06400000000001
- type: recall_at_1000
value: 86.515
- type: recall_at_3
value: 28.78
- type: recall_at_5
value: 33.629999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.695
- type: map_at_10
value: 36.205999999999996
- type: map_at_100
value: 37.346000000000004
- type: map_at_1000
value: 37.447
- type: map_at_3
value: 32.84
- type: map_at_5
value: 34.733000000000004
- type: mrr_at_1
value: 31.343
- type: mrr_at_10
value: 40.335
- type: mrr_at_100
value: 41.162
- type: mrr_at_1000
value: 41.221000000000004
- type: mrr_at_3
value: 37.329
- type: mrr_at_5
value: 39.068999999999996
- type: ndcg_at_1
value: 31.343
- type: ndcg_at_10
value: 41.996
- type: ndcg_at_100
value: 47.096
- type: ndcg_at_1000
value: 49.4
- type: ndcg_at_3
value: 35.902
- type: ndcg_at_5
value: 38.848
- type: precision_at_1
value: 31.343
- type: precision_at_10
value: 7.146
- type: precision_at_100
value: 1.098
- type: precision_at_1000
value: 0.14100000000000001
- type: precision_at_3
value: 16.014
- type: precision_at_5
value: 11.735
- type: recall_at_1
value: 26.695
- type: recall_at_10
value: 55.525000000000006
- type: recall_at_100
value: 77.376
- type: recall_at_1000
value: 93.476
- type: recall_at_3
value: 39.439
- type: recall_at_5
value: 46.501
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.196
- type: map_at_10
value: 33.516
- type: map_at_100
value: 35.202
- type: map_at_1000
value: 35.426
- type: map_at_3
value: 30.561
- type: map_at_5
value: 31.961000000000002
- type: mrr_at_1
value: 29.644
- type: mrr_at_10
value: 38.769
- type: mrr_at_100
value: 39.843
- type: mrr_at_1000
value: 39.888
- type: mrr_at_3
value: 36.132999999999996
- type: mrr_at_5
value: 37.467
- type: ndcg_at_1
value: 29.644
- type: ndcg_at_10
value: 39.584
- type: ndcg_at_100
value: 45.964
- type: ndcg_at_1000
value: 48.27
- type: ndcg_at_3
value: 34.577999999999996
- type: ndcg_at_5
value: 36.498000000000005
- type: precision_at_1
value: 29.644
- type: precision_at_10
value: 7.668
- type: precision_at_100
value: 1.545
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 16.271
- type: precision_at_5
value: 11.620999999999999
- type: recall_at_1
value: 24.196
- type: recall_at_10
value: 51.171
- type: recall_at_100
value: 79.212
- type: recall_at_1000
value: 92.976
- type: recall_at_3
value: 36.797999999999995
- type: recall_at_5
value: 42.006
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 21.023
- type: map_at_10
value: 29.677
- type: map_at_100
value: 30.618000000000002
- type: map_at_1000
value: 30.725
- type: map_at_3
value: 27.227
- type: map_at_5
value: 28.523
- type: mrr_at_1
value: 22.921
- type: mrr_at_10
value: 31.832
- type: mrr_at_100
value: 32.675
- type: mrr_at_1000
value: 32.751999999999995
- type: mrr_at_3
value: 29.513
- type: mrr_at_5
value: 30.89
- type: ndcg_at_1
value: 22.921
- type: ndcg_at_10
value: 34.699999999999996
- type: ndcg_at_100
value: 39.302
- type: ndcg_at_1000
value: 41.919000000000004
- type: ndcg_at_3
value: 29.965999999999998
- type: ndcg_at_5
value: 32.22
- type: precision_at_1
value: 22.921
- type: precision_at_10
value: 5.564
- type: precision_at_100
value: 0.8340000000000001
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 13.123999999999999
- type: precision_at_5
value: 9.316
- type: recall_at_1
value: 21.023
- type: recall_at_10
value: 48.015
- type: recall_at_100
value: 68.978
- type: recall_at_1000
value: 88.198
- type: recall_at_3
value: 35.397
- type: recall_at_5
value: 40.701
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.198
- type: map_at_10
value: 19.336000000000002
- type: map_at_100
value: 21.382
- type: map_at_1000
value: 21.581
- type: map_at_3
value: 15.992
- type: map_at_5
value: 17.613
- type: mrr_at_1
value: 25.080999999999996
- type: mrr_at_10
value: 36.032
- type: mrr_at_100
value: 37.1
- type: mrr_at_1000
value: 37.145
- type: mrr_at_3
value: 32.595
- type: mrr_at_5
value: 34.553
- type: ndcg_at_1
value: 25.080999999999996
- type: ndcg_at_10
value: 27.290999999999997
- type: ndcg_at_100
value: 35.31
- type: ndcg_at_1000
value: 38.885
- type: ndcg_at_3
value: 21.895999999999997
- type: ndcg_at_5
value: 23.669999999999998
- type: precision_at_1
value: 25.080999999999996
- type: precision_at_10
value: 8.645
- type: precision_at_100
value: 1.7209999999999999
- type: precision_at_1000
value: 0.23900000000000002
- type: precision_at_3
value: 16.287
- type: precision_at_5
value: 12.625
- type: recall_at_1
value: 11.198
- type: recall_at_10
value: 33.355000000000004
- type: recall_at_100
value: 60.912
- type: recall_at_1000
value: 80.89
- type: recall_at_3
value: 20.055
- type: recall_at_5
value: 25.14
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.228
- type: map_at_10
value: 20.018
- type: map_at_100
value: 28.388999999999996
- type: map_at_1000
value: 30.073
- type: map_at_3
value: 14.366999999999999
- type: map_at_5
value: 16.705000000000002
- type: mrr_at_1
value: 69.0
- type: mrr_at_10
value: 77.058
- type: mrr_at_100
value: 77.374
- type: mrr_at_1000
value: 77.384
- type: mrr_at_3
value: 75.708
- type: mrr_at_5
value: 76.608
- type: ndcg_at_1
value: 57.49999999999999
- type: ndcg_at_10
value: 41.792
- type: ndcg_at_100
value: 47.374
- type: ndcg_at_1000
value: 55.13
- type: ndcg_at_3
value: 46.353
- type: ndcg_at_5
value: 43.702000000000005
- type: precision_at_1
value: 69.0
- type: precision_at_10
value: 32.85
- type: precision_at_100
value: 10.708
- type: precision_at_1000
value: 2.024
- type: precision_at_3
value: 49.5
- type: precision_at_5
value: 42.05
- type: recall_at_1
value: 9.228
- type: recall_at_10
value: 25.635
- type: recall_at_100
value: 54.894
- type: recall_at_1000
value: 79.38
- type: recall_at_3
value: 15.68
- type: recall_at_5
value: 19.142
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.035
- type: f1
value: 46.85325505614071
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 70.132
- type: map_at_10
value: 79.527
- type: map_at_100
value: 79.81200000000001
- type: map_at_1000
value: 79.828
- type: map_at_3
value: 78.191
- type: map_at_5
value: 79.092
- type: mrr_at_1
value: 75.563
- type: mrr_at_10
value: 83.80199999999999
- type: mrr_at_100
value: 83.93
- type: mrr_at_1000
value: 83.933
- type: mrr_at_3
value: 82.818
- type: mrr_at_5
value: 83.505
- type: ndcg_at_1
value: 75.563
- type: ndcg_at_10
value: 83.692
- type: ndcg_at_100
value: 84.706
- type: ndcg_at_1000
value: 85.001
- type: ndcg_at_3
value: 81.51
- type: ndcg_at_5
value: 82.832
- type: precision_at_1
value: 75.563
- type: precision_at_10
value: 10.245
- type: precision_at_100
value: 1.0959999999999999
- type: precision_at_1000
value: 0.11399999999999999
- type: precision_at_3
value: 31.518
- type: precision_at_5
value: 19.772000000000002
- type: recall_at_1
value: 70.132
- type: recall_at_10
value: 92.204
- type: recall_at_100
value: 96.261
- type: recall_at_1000
value: 98.17399999999999
- type: recall_at_3
value: 86.288
- type: recall_at_5
value: 89.63799999999999
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.269
- type: map_at_10
value: 36.042
- type: map_at_100
value: 37.988
- type: map_at_1000
value: 38.162
- type: map_at_3
value: 31.691000000000003
- type: map_at_5
value: 33.988
- type: mrr_at_1
value: 44.907000000000004
- type: mrr_at_10
value: 53.348
- type: mrr_at_100
value: 54.033
- type: mrr_at_1000
value: 54.064
- type: mrr_at_3
value: 50.977
- type: mrr_at_5
value: 52.112
- type: ndcg_at_1
value: 44.907000000000004
- type: ndcg_at_10
value: 44.302
- type: ndcg_at_100
value: 51.054
- type: ndcg_at_1000
value: 53.822
- type: ndcg_at_3
value: 40.615
- type: ndcg_at_5
value: 41.455999999999996
- type: precision_at_1
value: 44.907000000000004
- type: precision_at_10
value: 12.176
- type: precision_at_100
value: 1.931
- type: precision_at_1000
value: 0.243
- type: precision_at_3
value: 27.16
- type: precision_at_5
value: 19.567999999999998
- type: recall_at_1
value: 22.269
- type: recall_at_10
value: 51.188
- type: recall_at_100
value: 75.924
- type: recall_at_1000
value: 92.525
- type: recall_at_3
value: 36.643
- type: recall_at_5
value: 42.27
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.412
- type: map_at_10
value: 66.376
- type: map_at_100
value: 67.217
- type: map_at_1000
value: 67.271
- type: map_at_3
value: 62.741
- type: map_at_5
value: 65.069
- type: mrr_at_1
value: 80.824
- type: mrr_at_10
value: 86.53
- type: mrr_at_100
value: 86.67399999999999
- type: mrr_at_1000
value: 86.678
- type: mrr_at_3
value: 85.676
- type: mrr_at_5
value: 86.256
- type: ndcg_at_1
value: 80.824
- type: ndcg_at_10
value: 74.332
- type: ndcg_at_100
value: 77.154
- type: ndcg_at_1000
value: 78.12400000000001
- type: ndcg_at_3
value: 69.353
- type: ndcg_at_5
value: 72.234
- type: precision_at_1
value: 80.824
- type: precision_at_10
value: 15.652
- type: precision_at_100
value: 1.7840000000000003
- type: precision_at_1000
value: 0.191
- type: precision_at_3
value: 44.911
- type: precision_at_5
value: 29.221000000000004
- type: recall_at_1
value: 40.412
- type: recall_at_10
value: 78.25800000000001
- type: recall_at_100
value: 89.196
- type: recall_at_1000
value: 95.544
- type: recall_at_3
value: 67.367
- type: recall_at_5
value: 73.05199999999999
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 92.78880000000001
- type: ap
value: 89.39251741048801
- type: f1
value: 92.78019950076781
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.888
- type: map_at_10
value: 35.146
- type: map_at_100
value: 36.325
- type: map_at_1000
value: 36.372
- type: map_at_3
value: 31.3
- type: map_at_5
value: 33.533
- type: mrr_at_1
value: 23.480999999999998
- type: mrr_at_10
value: 35.777
- type: mrr_at_100
value: 36.887
- type: mrr_at_1000
value: 36.928
- type: mrr_at_3
value: 31.989
- type: mrr_at_5
value: 34.202
- type: ndcg_at_1
value: 23.496
- type: ndcg_at_10
value: 42.028999999999996
- type: ndcg_at_100
value: 47.629
- type: ndcg_at_1000
value: 48.785000000000004
- type: ndcg_at_3
value: 34.227000000000004
- type: ndcg_at_5
value: 38.207
- type: precision_at_1
value: 23.496
- type: precision_at_10
value: 6.596
- type: precision_at_100
value: 0.9400000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.513000000000002
- type: precision_at_5
value: 10.711
- type: recall_at_1
value: 22.888
- type: recall_at_10
value: 63.129999999999995
- type: recall_at_100
value: 88.90299999999999
- type: recall_at_1000
value: 97.69
- type: recall_at_3
value: 42.014
- type: recall_at_5
value: 51.554
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.59188326493388
- type: f1
value: 94.36568950290486
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.25672594619242
- type: f1
value: 59.52405059722216
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 77.4142568930733
- type: f1
value: 75.23044196543388
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.44720914593141
- type: f1
value: 80.41049641537015
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 31.960921474993775
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.88042240204361
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.27071371606404
- type: mrr
value: 33.541450459533856
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.551
- type: map_at_10
value: 14.359
- type: map_at_100
value: 18.157
- type: map_at_1000
value: 19.659
- type: map_at_3
value: 10.613999999999999
- type: map_at_5
value: 12.296
- type: mrr_at_1
value: 47.368
- type: mrr_at_10
value: 56.689
- type: mrr_at_100
value: 57.24399999999999
- type: mrr_at_1000
value: 57.284
- type: mrr_at_3
value: 54.489
- type: mrr_at_5
value: 55.928999999999995
- type: ndcg_at_1
value: 45.511
- type: ndcg_at_10
value: 36.911
- type: ndcg_at_100
value: 34.241
- type: ndcg_at_1000
value: 43.064
- type: ndcg_at_3
value: 42.348
- type: ndcg_at_5
value: 39.884
- type: precision_at_1
value: 46.749
- type: precision_at_10
value: 27.028000000000002
- type: precision_at_100
value: 8.52
- type: precision_at_1000
value: 2.154
- type: precision_at_3
value: 39.525
- type: precision_at_5
value: 34.18
- type: recall_at_1
value: 6.551
- type: recall_at_10
value: 18.602
- type: recall_at_100
value: 34.882999999999996
- type: recall_at_1000
value: 66.049
- type: recall_at_3
value: 11.872
- type: recall_at_5
value: 14.74
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.828999999999997
- type: map_at_10
value: 43.606
- type: map_at_100
value: 44.656
- type: map_at_1000
value: 44.690000000000005
- type: map_at_3
value: 39.015
- type: map_at_5
value: 41.625
- type: mrr_at_1
value: 31.518
- type: mrr_at_10
value: 46.047
- type: mrr_at_100
value: 46.846
- type: mrr_at_1000
value: 46.867999999999995
- type: mrr_at_3
value: 42.154
- type: mrr_at_5
value: 44.468999999999994
- type: ndcg_at_1
value: 31.518
- type: ndcg_at_10
value: 51.768
- type: ndcg_at_100
value: 56.184999999999995
- type: ndcg_at_1000
value: 56.92
- type: ndcg_at_3
value: 43.059999999999995
- type: ndcg_at_5
value: 47.481
- type: precision_at_1
value: 31.518
- type: precision_at_10
value: 8.824
- type: precision_at_100
value: 1.131
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 19.969
- type: precision_at_5
value: 14.502
- type: recall_at_1
value: 27.828999999999997
- type: recall_at_10
value: 74.244
- type: recall_at_100
value: 93.325
- type: recall_at_1000
value: 98.71799999999999
- type: recall_at_3
value: 51.601
- type: recall_at_5
value: 61.841
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.54
- type: map_at_10
value: 85.509
- type: map_at_100
value: 86.137
- type: map_at_1000
value: 86.151
- type: map_at_3
value: 82.624
- type: map_at_5
value: 84.425
- type: mrr_at_1
value: 82.45
- type: mrr_at_10
value: 88.344
- type: mrr_at_100
value: 88.437
- type: mrr_at_1000
value: 88.437
- type: mrr_at_3
value: 87.417
- type: mrr_at_5
value: 88.066
- type: ndcg_at_1
value: 82.45
- type: ndcg_at_10
value: 89.092
- type: ndcg_at_100
value: 90.252
- type: ndcg_at_1000
value: 90.321
- type: ndcg_at_3
value: 86.404
- type: ndcg_at_5
value: 87.883
- type: precision_at_1
value: 82.45
- type: precision_at_10
value: 13.496
- type: precision_at_100
value: 1.536
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.833
- type: precision_at_5
value: 24.79
- type: recall_at_1
value: 71.54
- type: recall_at_10
value: 95.846
- type: recall_at_100
value: 99.715
- type: recall_at_1000
value: 99.979
- type: recall_at_3
value: 88.01299999999999
- type: recall_at_5
value: 92.32000000000001
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 57.60557586253866
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 64.0287172242051
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.9849999999999994
- type: map_at_10
value: 11.397
- type: map_at_100
value: 13.985
- type: map_at_1000
value: 14.391000000000002
- type: map_at_3
value: 7.66
- type: map_at_5
value: 9.46
- type: mrr_at_1
value: 19.8
- type: mrr_at_10
value: 31.958
- type: mrr_at_100
value: 33.373999999999995
- type: mrr_at_1000
value: 33.411
- type: mrr_at_3
value: 28.316999999999997
- type: mrr_at_5
value: 30.297
- type: ndcg_at_1
value: 19.8
- type: ndcg_at_10
value: 19.580000000000002
- type: ndcg_at_100
value: 29.555999999999997
- type: ndcg_at_1000
value: 35.882
- type: ndcg_at_3
value: 17.544
- type: ndcg_at_5
value: 15.815999999999999
- type: precision_at_1
value: 19.8
- type: precision_at_10
value: 10.61
- type: precision_at_100
value: 2.501
- type: precision_at_1000
value: 0.40099999999999997
- type: precision_at_3
value: 16.900000000000002
- type: precision_at_5
value: 14.44
- type: recall_at_1
value: 3.9849999999999994
- type: recall_at_10
value: 21.497
- type: recall_at_100
value: 50.727999999999994
- type: recall_at_1000
value: 81.27499999999999
- type: recall_at_3
value: 10.263
- type: recall_at_5
value: 14.643
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 85.0087509585503
- type: cos_sim_spearman
value: 81.74697270664319
- type: euclidean_pearson
value: 81.80424382731947
- type: euclidean_spearman
value: 81.29794251968431
- type: manhattan_pearson
value: 81.81524666226125
- type: manhattan_spearman
value: 81.29475370198963
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.44442736429552
- type: cos_sim_spearman
value: 78.51011398910948
- type: euclidean_pearson
value: 83.36181801196723
- type: euclidean_spearman
value: 79.47272621331535
- type: manhattan_pearson
value: 83.3660113483837
- type: manhattan_spearman
value: 79.47695922566032
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 85.82923943323635
- type: cos_sim_spearman
value: 86.62037823380983
- type: euclidean_pearson
value: 83.56369548403958
- type: euclidean_spearman
value: 84.2176755481191
- type: manhattan_pearson
value: 83.55460702084464
- type: manhattan_spearman
value: 84.18617930921467
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 84.09071068110103
- type: cos_sim_spearman
value: 83.05697553913335
- type: euclidean_pearson
value: 81.1377457216497
- type: euclidean_spearman
value: 81.74714169016676
- type: manhattan_pearson
value: 81.0893424142723
- type: manhattan_spearman
value: 81.7058918219677
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.61132157220429
- type: cos_sim_spearman
value: 88.38581627185445
- type: euclidean_pearson
value: 86.14904510913374
- type: euclidean_spearman
value: 86.5452758925542
- type: manhattan_pearson
value: 86.1484025377679
- type: manhattan_spearman
value: 86.55483841566252
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 85.46195145161064
- type: cos_sim_spearman
value: 86.82409112251158
- type: euclidean_pearson
value: 84.75479672288957
- type: euclidean_spearman
value: 85.41144307151548
- type: manhattan_pearson
value: 84.70914329694165
- type: manhattan_spearman
value: 85.38477943384089
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.06351289930238
- type: cos_sim_spearman
value: 87.90311138579116
- type: euclidean_pearson
value: 86.17651467063077
- type: euclidean_spearman
value: 84.89447802019073
- type: manhattan_pearson
value: 86.3267677479595
- type: manhattan_spearman
value: 85.00472295103874
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.78311975978767
- type: cos_sim_spearman
value: 66.76465685245887
- type: euclidean_pearson
value: 67.21687806595443
- type: euclidean_spearman
value: 65.05776733534435
- type: manhattan_pearson
value: 67.14008143635883
- type: manhattan_spearman
value: 65.25247076149701
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 86.7403488889418
- type: cos_sim_spearman
value: 87.76870289783061
- type: euclidean_pearson
value: 84.83171077794671
- type: euclidean_spearman
value: 85.50579695091902
- type: manhattan_pearson
value: 84.83074260180555
- type: manhattan_spearman
value: 85.47589026938667
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.56234016237356
- type: mrr
value: 96.26124238869338
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 59.660999999999994
- type: map_at_10
value: 69.105
- type: map_at_100
value: 69.78
- type: map_at_1000
value: 69.80199999999999
- type: map_at_3
value: 65.991
- type: map_at_5
value: 68.02
- type: mrr_at_1
value: 62.666999999999994
- type: mrr_at_10
value: 70.259
- type: mrr_at_100
value: 70.776
- type: mrr_at_1000
value: 70.796
- type: mrr_at_3
value: 67.889
- type: mrr_at_5
value: 69.52199999999999
- type: ndcg_at_1
value: 62.666999999999994
- type: ndcg_at_10
value: 73.425
- type: ndcg_at_100
value: 75.955
- type: ndcg_at_1000
value: 76.459
- type: ndcg_at_3
value: 68.345
- type: ndcg_at_5
value: 71.319
- type: precision_at_1
value: 62.666999999999994
- type: precision_at_10
value: 9.667
- type: precision_at_100
value: 1.09
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 26.333000000000002
- type: precision_at_5
value: 17.732999999999997
- type: recall_at_1
value: 59.660999999999994
- type: recall_at_10
value: 85.422
- type: recall_at_100
value: 96.167
- type: recall_at_1000
value: 100.0
- type: recall_at_3
value: 72.044
- type: recall_at_5
value: 79.428
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.86435643564356
- type: cos_sim_ap
value: 96.83057412333741
- type: cos_sim_f1
value: 93.04215337734891
- type: cos_sim_precision
value: 94.53044375644994
- type: cos_sim_recall
value: 91.60000000000001
- type: dot_accuracy
value: 99.7910891089109
- type: dot_ap
value: 94.10681982106397
- type: dot_f1
value: 89.34881373043918
- type: dot_precision
value: 90.21406727828746
- type: dot_recall
value: 88.5
- type: euclidean_accuracy
value: 99.85544554455446
- type: euclidean_ap
value: 96.78545104478602
- type: euclidean_f1
value: 92.65143992055613
- type: euclidean_precision
value: 92.01183431952663
- type: euclidean_recall
value: 93.30000000000001
- type: manhattan_accuracy
value: 99.85841584158416
- type: manhattan_ap
value: 96.80748903307823
- type: manhattan_f1
value: 92.78247884519662
- type: manhattan_precision
value: 92.36868186323092
- type: manhattan_recall
value: 93.2
- type: max_accuracy
value: 99.86435643564356
- type: max_ap
value: 96.83057412333741
- type: max_f1
value: 93.04215337734891
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 65.53971025855282
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 33.97791591490788
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.852215301355066
- type: mrr
value: 56.85527809608691
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.21442519856758
- type: cos_sim_spearman
value: 30.822536216936825
- type: dot_pearson
value: 28.661325528121807
- type: dot_spearman
value: 28.1435226478879
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.183
- type: map_at_10
value: 1.526
- type: map_at_100
value: 7.915
- type: map_at_1000
value: 19.009
- type: map_at_3
value: 0.541
- type: map_at_5
value: 0.8659999999999999
- type: mrr_at_1
value: 68.0
- type: mrr_at_10
value: 81.186
- type: mrr_at_100
value: 81.186
- type: mrr_at_1000
value: 81.186
- type: mrr_at_3
value: 80.0
- type: mrr_at_5
value: 80.9
- type: ndcg_at_1
value: 64.0
- type: ndcg_at_10
value: 64.13799999999999
- type: ndcg_at_100
value: 47.632000000000005
- type: ndcg_at_1000
value: 43.037
- type: ndcg_at_3
value: 67.542
- type: ndcg_at_5
value: 67.496
- type: precision_at_1
value: 68.0
- type: precision_at_10
value: 67.80000000000001
- type: precision_at_100
value: 48.980000000000004
- type: precision_at_1000
value: 19.036
- type: precision_at_3
value: 72.0
- type: precision_at_5
value: 71.2
- type: recall_at_1
value: 0.183
- type: recall_at_10
value: 1.799
- type: recall_at_100
value: 11.652999999999999
- type: recall_at_1000
value: 40.086
- type: recall_at_3
value: 0.5930000000000001
- type: recall_at_5
value: 0.983
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.29
- type: map_at_10
value: 9.489
- type: map_at_100
value: 15.051
- type: map_at_1000
value: 16.561999999999998
- type: map_at_3
value: 5.137
- type: map_at_5
value: 6.7989999999999995
- type: mrr_at_1
value: 28.571
- type: mrr_at_10
value: 45.699
- type: mrr_at_100
value: 46.461000000000006
- type: mrr_at_1000
value: 46.461000000000006
- type: mrr_at_3
value: 41.837
- type: mrr_at_5
value: 43.163000000000004
- type: ndcg_at_1
value: 23.469
- type: ndcg_at_10
value: 23.544999999999998
- type: ndcg_at_100
value: 34.572
- type: ndcg_at_1000
value: 46.035
- type: ndcg_at_3
value: 27.200000000000003
- type: ndcg_at_5
value: 25.266
- type: precision_at_1
value: 28.571
- type: precision_at_10
value: 22.041
- type: precision_at_100
value: 7.3469999999999995
- type: precision_at_1000
value: 1.484
- type: precision_at_3
value: 29.932
- type: precision_at_5
value: 26.531
- type: recall_at_1
value: 2.29
- type: recall_at_10
value: 15.895999999999999
- type: recall_at_100
value: 45.518
- type: recall_at_1000
value: 80.731
- type: recall_at_3
value: 6.433
- type: recall_at_5
value: 9.484
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.4178
- type: ap
value: 14.575240629602373
- type: f1
value: 55.02449563229096
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 60.00282965478212
- type: f1
value: 60.34413028768773
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 50.409448342549936
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.62591643321214
- type: cos_sim_ap
value: 79.28766491329633
- type: cos_sim_f1
value: 71.98772064466617
- type: cos_sim_precision
value: 69.8609731876862
- type: cos_sim_recall
value: 74.24802110817942
- type: dot_accuracy
value: 84.75293556654945
- type: dot_ap
value: 69.72705761174353
- type: dot_f1
value: 65.08692852543464
- type: dot_precision
value: 63.57232704402516
- type: dot_recall
value: 66.6754617414248
- type: euclidean_accuracy
value: 87.44710019669786
- type: euclidean_ap
value: 79.11021477292638
- type: euclidean_f1
value: 71.5052389470994
- type: euclidean_precision
value: 69.32606541129832
- type: euclidean_recall
value: 73.82585751978891
- type: manhattan_accuracy
value: 87.42325803182929
- type: manhattan_ap
value: 79.05094494327616
- type: manhattan_f1
value: 71.36333985649055
- type: manhattan_precision
value: 70.58064516129032
- type: manhattan_recall
value: 72.16358839050132
- type: max_accuracy
value: 87.62591643321214
- type: max_ap
value: 79.28766491329633
- type: max_f1
value: 71.98772064466617
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.85202002561415
- type: cos_sim_ap
value: 85.9835303311168
- type: cos_sim_f1
value: 78.25741142443962
- type: cos_sim_precision
value: 73.76635768811342
- type: cos_sim_recall
value: 83.3307668617185
- type: dot_accuracy
value: 88.20584468506229
- type: dot_ap
value: 83.591632302697
- type: dot_f1
value: 76.81739705396173
- type: dot_precision
value: 73.45275728837373
- type: dot_recall
value: 80.50508161379734
- type: euclidean_accuracy
value: 88.64633057787093
- type: euclidean_ap
value: 85.25705123182283
- type: euclidean_f1
value: 77.18535726329199
- type: euclidean_precision
value: 75.17699437997226
- type: euclidean_recall
value: 79.30397289805975
- type: manhattan_accuracy
value: 88.63274731245392
- type: manhattan_ap
value: 85.2376825633018
- type: manhattan_f1
value: 77.15810785937788
- type: manhattan_precision
value: 73.92255061014319
- type: manhattan_recall
value: 80.68986757006468
- type: max_accuracy
value: 88.85202002561415
- type: max_ap
value: 85.9835303311168
- type: max_f1
value: 78.25741142443962
---
# ember-v1
<p align="center">
<img src="https://console.llmrails.com/assets/img/logo-black.svg" width="150px">
</p>
This model has been trained on an extensive corpus of text pairs that encompass a broad spectrum of domains, including finance, science, medicine, law, and various others. During the training process, we incorporated techniques derived from the [RetroMAE](https://arxiv.org/abs/2205.12035) and [SetFit](https://arxiv.org/abs/2209.11055) research papers.
We are pleased to offer this model as an API service through our platform, [LLMRails](https://llmrails.com/?ref=ember-v1). If you are interested, please don't hesitate to sign up.
### Plans
- The research paper will be published soon.
- The v2 of the model is currently in development and will feature an extended maximum sequence length of 4,000 tokens.
## Usage
Use with API request:
```bash
curl --location 'https://api.llmrails.com/v1/embeddings' \
--header 'X-API-KEY: {token}' \
--header 'Content-Type: application/json' \
--data '{
"input": ["This is an example sentence"],
"model":"embedding-english-v1" # equals to ember-v1
}'
```
API docs: https://docs.llmrails.com/embedding/embed-text<br>
Langchain plugin: https://python.langchain.com/docs/integrations/text_embedding/llm_rails
Use with transformers:
```python
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"This is an example sentence",
"Each sentence is converted"
]
tokenizer = AutoTokenizer.from_pretrained("llmrails/ember-v1")
model = AutoModel.from_pretrained("llmrails/ember-v1")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
```
Use with sentence-transformers:
```python
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = [
"This is an example sentence",
"Each sentence is converted"
]
model = SentenceTransformer('llmrails/ember-v1')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
```
## Massive Text Embedding Benchmark (MTEB) Evaluation
Our model achieve state-of-the-art performance on [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
| Model Name | Dimension | Sequence Length | Average (56) |
|:-----------------------------------------------------------------------:|:---------:|:---:|:------------:|
| [bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | 64.23 |
| [bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 |
| [ember-v1](https://huggingface.co/llmrails/emmbedding-en-v1) | 1024 | 512 | **63.54** |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings/types-of-embedding-models) | 1536 | 8191 | 60.99 |
### Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.