bling-falcon-1b-0.1 / README.md
doberst's picture
initial commit to repo
8f05c4b
|
raw
history blame
4.74 kB
---
license: apache-2.0
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
bling-falcon-1b-0.1 is part of the BLING ("Best Little Instruction-following No-GPU-required") model series, instruct trained on top of a falcon-rw-1b base model
BLING models are fine-tuned with distilled high-quality custom instruct datasets, targeted at a specific subset of instruct tasks with
the objective of providing a high-quality Instruct model that is 'inference-ready' on a CPU laptop even
without using any advanced quantization optimizations.
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** llmware
- **Model type:** GPTNeoX instruct-trained decoder
- **Language(s) (NLP):** English
- **License:** Apache 2.0
- **Finetuned from model [optional]:** tiiuae/falcon-rw-1b
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The intended use of BLING models is two-fold:
1. Provide high-quality Instruct models that can run on a laptop for local testing. We have found it extremely useful when building a
proof-of-concept, or working with sensitive enterprise data that must be closely guarded, especially in RAG use cases.
2. Push the state of the art for smaller Instruct-following models in the sub-7B parameter range, especially 1B-3B, as single-purpose
automation tools for specific tasks through targeted fine-tuning datasets and focused "instruction" tasks.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
BLING is designed for enterprise automation use cases, especially in knowledge-intensive industries, such as financial services,
legal and regulatory industries with complex information sources. Rather than try to be "all things to all people," BLING models try to focus on a narrower set of Instructions more suitable to a ~1B parameter GPT model.
BLING is ideal for rapid prototyping, testing, and the ability to perform an end-to-end workflow locally on a laptop without
having to send sensitive information over an Internet-based API.
The first BLING models have been trained for common RAG scenarios, specifically: question-answering, key-value extraction, and basic summarization as the core instruction types
without the need for a lot of complex instruction verbiage - provide a text passage context, ask questions, and get clear fact-based responses.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
1. BLING is not designed for 'chat-bot' or 'consumer-oriented' applications.
2. BLING is not optimal for most production applications, other than simple and highly specific use cases.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
BLING has not been designed for end consumer-oriented applications, and there has not been any focus in training on safeguards to mitigate potential bias. We would strongly discourage any use of BLING for any 'chatbot' use case.
## How to Get Started with the Model
The fastest way to get started with BLING is through direct import in transformers:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("llmware/bling-falcon-1b-0.1")
model = AutoModelForCausalLM.from_pretrained("llmware/bling-falcon-1b-0.1")
The BLING model was fine-tuned with a simple "\<human> and \<bot> wrapper", so to get the best results, wrap inference entries as:
full_prompt = "\<human>\: " + my_prompt + "\n" + "\<bot>\: "
The BLING model was fine-tuned with closed-context samples, which assume generally that the prompt consists of two sub-parts:
1. Text Passage Context, and
2. Specific question or instruction based on the text passage
To get the best results, package "my_prompt" as follows:
my_prompt = {{text_passage}} + "\n" + {{question/instruction}}
## Citation [optional]
This BLING models was built on top of a Falcon model base - for more information, please see the paper referenced below:
{
Title: "The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with Web Data, and Web Data Only"
Authors: Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Allessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, Julien Launay
Publication Date: June 1, 2023
}
## Model Card Contact
Darren Oberst & llmware team
Please reach out anytime if you are interested in this project and would like to participate and work with us!