Transformers
GGUF
llama
doberst's picture
Update README.md
fc5a297 verified
|
raw
history blame
2.23 kB
---
license: apache-2.0
inference: false
---
# SLIM-EXTRACT-TINY-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-extract-tiny-tool** is a 4_K_M quantized GGUF version of slim-extract, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
This model has been fine-tuned to implement a general-purpose extraction function that takes a custom key as input parameter, and generates a python dictionary consisting of that custom key with the value consisting of a list of the values associated with that key in the text.
The size of the self-contained GGUF model binary is less than 700 MB, which is small enough to run locally on a CPU with reasonable inference speed, and has been designed to balance solid quality with fast loading and inference on a local machine.
The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs.
[**slim-extract-tiny**](https://huggingface.co/llmware/slim-extract-tiny) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-extract-tiny-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-extract-tiny-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-extract-tiny-tool", verbose=True)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-extract-tiny-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)