license: apache-2.0
inference: false
SLIM-EXTRACT-TINY-TOOL
slim-extract-tiny-tool is a 4_K_M quantized GGUF version of slim-extract, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
This model has been fine-tuned to implement a general-purpose extraction function that takes a custom key as input parameter, and generates a python dictionary consisting of that custom key with the value consisting of a list of the values associated with that key in the text.
The size of the self-contained GGUF model binary is less than 700 MB, which is small enough to run locally on a CPU with reasonable inference speed, and has been designed to balance solid quality with fast loading and inference on a local machine.
The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs.
slim-extract-tiny is part of the SLIM ("Structured Language Instruction Model") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-extract-tiny-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-extract-tiny-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-extract-tiny-tool", verbose=True)
Note: please review config.json in the repository for prompt wrapping information, details on the model, and full test set.
Model Card Contact
Darren Oberst & llmware team