|
--- |
|
license: cc-by-sa-4.0 |
|
inference: false |
|
--- |
|
|
|
# SLIM-SA-NER |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
**slim-sa-ner** combines two of the most popular traditional classifier functions (**Sentiment Analysis** and **Named Entity Recognition**), and reimagines them as function calls on a specialized decoder-based LLM, generating output consisting of a python dictionary with keys corresponding to sentiment, and NER identifiers, such as people, organization, and place, e.g.: |
|
|
|
`{'sentiment': ['positive'], people': ['..'], 'organization': ['..'],` |
|
`'place': ['..]}` |
|
|
|
This 3B parameter 'combo' model is designed to illustrate the potential power of using function calls on small, specialized models to enable a single model architecture to combine the capabilities of what were traditionally two separate model architectures on an encoder. |
|
|
|
The intent of SLIMs is to forge a middle-ground between traditional encoder-based classifiers and open-ended API-based LLMs, providing an intuitive, flexible natural language response, without complex prompting, and with improved generalization and ability to fine-tune to a specific domain use case. |
|
|
|
|
|
This model is fine-tuned on top of [**llmware/bling-stable-lm-3b-4e1t-v0**](https://huggingface.co/llmware/bling-stable-lm-3b-4e1t-v0), which in turn, is a fine-tune of stabilityai/stablelm-3b-4elt. |
|
|
|
For fast inference, we would recommend the 'quantized tool' version of this model, e.g., [**'slim-sa-ner-tool'**](https://huggingface.co/llmware/slim-sa-ner-tool). |
|
|
|
|
|
## Prompt format: |
|
|
|
`function = "classify"` |
|
`params = "sentiment, person, organization, place"` |
|
`prompt = "<human> " + {text} + "\n" + ` |
|
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"` |
|
|
|
|
|
<details> |
|
<summary>Transformers Script </summary> |
|
|
|
model = AutoModelForCausalLM.from_pretrained("llmware/slim-sa-ner") |
|
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sa-ner") |
|
|
|
function = "classify" |
|
params = "topic" |
|
|
|
text = "Tesla stock declined yesterday 8% in premarket trading after a poorly-received event in San Francisco yesterday, in which the company indicated a likely shortfall in revenue." |
|
|
|
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
start_of_input = len(inputs.input_ids[0]) |
|
|
|
outputs = model.generate( |
|
inputs.input_ids.to('cpu'), |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=True, |
|
temperature=0.3, |
|
max_new_tokens=100 |
|
) |
|
|
|
output_only = tokenizer.decode(outputs[0][start_of_input:], skip_special_tokens=True) |
|
|
|
print("output only: ", output_only) |
|
|
|
# here's the fun part |
|
try: |
|
output_only = ast.literal_eval(llm_string_output) |
|
print("success - converted to python dictionary automatically") |
|
except: |
|
print("fail - could not convert to python dictionary automatically - ", llm_string_output) |
|
|
|
</details> |
|
|
|
<details> |
|
|
|
|
|
|
|
|
|
<summary>Using as Function Call in LLMWare</summary> |
|
|
|
from llmware.models import ModelCatalog |
|
slim_model = ModelCatalog().load_model("llmware/slim-sa-ner") |
|
response = slim_model.function_call(text,params=["sentiment", "people", "organization", "place"], function="classify") |
|
|
|
print("llmware - llm_response: ", response) |
|
|
|
</details> |
|
|
|
|
|
## Model Card Contact |
|
|
|
Darren Oberst & llmware team |
|
|
|
[Join us on Discord](https://discord.gg/MhZn5Nc39h) |