Update README.md
Browse files
README.md
CHANGED
@@ -7,22 +7,22 @@ inference: false
|
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
**slim-
|
11 |
|
12 |
-
slim-
|
13 |
|
14 |
-
`{"
|
15 |
|
16 |
|
17 |
SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
|
18 |
|
19 |
-
Each slim model has a 'quantized tool' version, e.g., [**'slim-
|
20 |
|
21 |
|
22 |
## Prompt format:
|
23 |
|
24 |
`function = "classify"`
|
25 |
-
`params = "
|
26 |
`prompt = "<human> " + {text} + "\n" + `
|
27 |
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
|
28 |
|
@@ -34,10 +34,12 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-topics")
|
35 |
|
36 |
function = "classify"
|
37 |
-
params = "
|
38 |
|
39 |
-
text = "
|
40 |
-
|
|
|
|
|
41 |
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
|
42 |
|
43 |
inputs = tokenizer(prompt, return_tensors="pt")
|
@@ -73,8 +75,8 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-topics-tool'**](
|
|
73 |
<summary>Using as Function Call in LLMWare</summary>
|
74 |
|
75 |
from llmware.models import ModelCatalog
|
76 |
-
slim_model = ModelCatalog().load_model("llmware/slim-
|
77 |
-
response = slim_model.function_call(text,params=["
|
78 |
|
79 |
print("llmware - llm_response: ", response)
|
80 |
|
|
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
+
**slim-tags** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
|
11 |
|
12 |
+
slim-tags has been fine-tuned for auto-generating relevant tags and points-of-interest function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
|
13 |
|
14 |
+
`{"tags": ["tag1", "tag2", "tag3",...]}`
|
15 |
|
16 |
|
17 |
SLIM models are designed to generate structured outputs that can be used programmatically as part of a multi-step, multi-model LLM-based automation workflow.
|
18 |
|
19 |
+
Each slim model has a 'quantized tool' version, e.g., [**'slim-tags-tool'**](https://huggingface.co/llmware/slim-tags-tool).
|
20 |
|
21 |
|
22 |
## Prompt format:
|
23 |
|
24 |
`function = "classify"`
|
25 |
+
`params = "tags"`
|
26 |
`prompt = "<human> " + {text} + "\n" + `
|
27 |
`"<{function}> " + {params} + "</{function}>" + "\n<bot>:"`
|
28 |
|
|
|
34 |
tokenizer = AutoTokenizer.from_pretrained("llmware/slim-topics")
|
35 |
|
36 |
function = "classify"
|
37 |
+
params = "tags"
|
38 |
|
39 |
+
text = "Citibank announced a reduction in its targets for economic growth in France and the UK last week "
|
40 |
+
"in light of ongoing concerns about inflation and unemployment, especially in large employers "
|
41 |
+
"such as Airbus."
|
42 |
+
|
43 |
prompt = "<human>: " + text + "\n" + f"<{function}> {params} </{function}>\n<bot>:"
|
44 |
|
45 |
inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
75 |
<summary>Using as Function Call in LLMWare</summary>
|
76 |
|
77 |
from llmware.models import ModelCatalog
|
78 |
+
slim_model = ModelCatalog().load_model("llmware/slim-tags")
|
79 |
+
response = slim_model.function_call(text,params=["tags"], function="classify")
|
80 |
|
81 |
print("llmware - llm_response: ", response)
|
82 |
|