not-ner-v3_batch16

This model is a fine-tuned version of dccuchile/tulio-chilean-spanish-bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1059
  • Accuracy: 0.9709
  • Precision: 0.9698
  • Recall: 0.9709
  • F1: 0.9699

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0452 0.2646 200 0.2503 0.9596 0.9578 0.9596 0.9558
0.1058 0.5291 400 0.1167 0.9686 0.9673 0.9686 0.9668
0.1106 0.7937 600 0.1059 0.9709 0.9698 0.9709 0.9699
0.103 1.0582 800 0.1179 0.9662 0.9657 0.9662 0.9659
0.0629 1.3228 1000 0.1298 0.9719 0.9709 0.9719 0.9705
0.0633 1.5873 1200 0.1176 0.9732 0.9728 0.9732 0.9730
0.0436 1.8519 1400 0.1257 0.9725 0.9721 0.9725 0.9723
0.0487 2.1164 1600 0.1206 0.9729 0.9724 0.9729 0.9726
0.0309 2.3810 1800 0.1232 0.9705 0.9705 0.9705 0.9705
0.0235 2.6455 2000 0.1379 0.9742 0.9738 0.9742 0.9740
0.0272 2.9101 2200 0.1327 0.9729 0.9724 0.9729 0.9726

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for lmaccarini/not-ner-v3_batch16

Finetuned
(9)
this model