File size: 7,532 Bytes
c07208a d94f733 c07208a d94f733 c07208a d94f733 c07208a d94f733 c07208a d94f733 c07208a 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc 9ef46e0 07dccbc c07208a d94f733 07dccbc c07208a d94f733 c07208a 7ab4ea8 c07208a 7ab4ea8 c07208a 7ab4ea8 07dccbc 7ab4ea8 d94f733 07dccbc 7ab4ea8 d94f733 7ab4ea8 c07208a 7ab4ea8 07dccbc d94f733 11296b6 c07208a 07dccbc c07208a d94f733 c07208a 07dccbc c07208a d94f733 ab88802 07dccbc ab88802 c07208a d94f733 c07208a 7ab4ea8 11296b6 7ab4ea8 11296b6 7ab4ea8 11296b6 7ab4ea8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: de
datasets:
- lmqg/qg_dequad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>"
example_title: "Question Generation Example 1"
- text: "das erste weltweit errichtete Hermann Brehmer <hl> 1855 <hl> im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen)."
example_title: "Question Generation Example 2"
- text: "Er muss Zyperngrieche sein und wird direkt für <hl> fünf Jahre <hl> gewählt (Art. 43 Abs. 1 der Verfassung) und verfügt über weitreichende Exekutivkompetenzen."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-dequad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_dequad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 0.43
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 10.08
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 11.47
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 79.9
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 54.64
- name: QAAlignedF1Score-BERTScore (Gold Answer)
type: qa_aligned_f1_score_bertscore_gold_answer
value: 90.55
- name: QAAlignedRecall-BERTScore (Gold Answer)
type: qa_aligned_recall_bertscore_gold_answer
value: 90.51
- name: QAAlignedPrecision-BERTScore (Gold Answer)
type: qa_aligned_precision_bertscore_gold_answer
value: 90.59
- name: QAAlignedF1Score-MoverScore (Gold Answer)
type: qa_aligned_f1_score_moverscore_gold_answer
value: 64.33
- name: QAAlignedRecall-MoverScore (Gold Answer)
type: qa_aligned_recall_moverscore_gold_answer
value: 64.29
- name: QAAlignedPrecision-MoverScore (Gold Answer)
type: qa_aligned_precision_moverscore_gold_answer
value: 64.37
---
# Model Card of `lmqg/mt5-small-dequad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** de
- **Training data:** [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="de", model="lmqg/mt5-small-dequad-qg")
# model prediction
questions = model.generate_q(list_context="das erste weltweit errichtete Hermann Brehmer 1855 im niederschlesischen ''Görbersdorf'' (heute Sokołowsko, Polen).", list_answer="1855")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-dequad-qg")
output = pipe("Empfangs- und Sendeantenne sollen in ihrer Polarisation übereinstimmen, andernfalls <hl> wird die Signalübertragung stark gedämpft. <hl>")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_dequad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 79.9 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_1 | 10.18 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_2 | 4.02 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_3 | 1.6 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| Bleu_4 | 0.43 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| METEOR | 11.47 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| MoverScore | 54.64 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| ROUGE_L | 10.08 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
- ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_dequad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 90.55 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedF1Score (MoverScore) | 64.33 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (BERTScore) | 90.59 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedPrecision (MoverScore) | 64.37 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (BERTScore) | 90.51 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
| QAAlignedRecall (MoverScore) | 64.29 | default | [lmqg/qg_dequad](https://huggingface.co/datasets/lmqg/qg_dequad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_dequad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 11
- batch: 16
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-dequad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|