File size: 7,315 Bytes
b1edc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05a93e9
 
 
 
 
b1edc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966a1aa
 
b1edc96
 
 
0b426a9
b1edc96
 
 
6cebc28
 
05a93e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1edc96
 
 
 
db8065a
966a1aa
 
b1edc96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-finetuned-ner

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5055
- Precision: 0.8737
- Recall: 0.8677
- F1: 0.8707
- Accuracy: 0.8449

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.19  | 50   | 0.5675          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 0.37  | 100  | 0.5571          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 0.56  | 150  | 0.5541          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 0.75  | 200  | 0.5682          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 0.93  | 250  | 0.5845          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 1.12  | 300  | 0.5533          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 1.31  | 350  | 0.5940          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 1.49  | 400  | 0.5553          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| No log        | 1.68  | 450  | 0.5661          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 1.87  | 500  | 0.5435          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.05  | 550  | 0.5300          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.24  | 600  | 0.5522          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.43  | 650  | 0.5155          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.61  | 700  | 0.5037          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.8   | 750  | 0.4923          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 2.99  | 800  | 0.4897          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 3.17  | 850  | 0.5021          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 3.36  | 900  | 0.5122          | 0.8574    | 0.9049 | 0.8805 | 0.8574   |
| 0.6392        | 3.54  | 950  | 0.4987          | 0.8575    | 0.9004 | 0.8784 | 0.8560   |
| 0.5724        | 3.73  | 1000 | 0.4861          | 0.8587    | 0.8971 | 0.8775 | 0.8541   |
| 0.5724        | 3.92  | 1050 | 0.4788          | 0.8607    | 0.9019 | 0.8808 | 0.8580   |
| 0.5724        | 4.1   | 1100 | 0.4989          | 0.8634    | 0.8826 | 0.8729 | 0.8459   |
| 0.5724        | 4.29  | 1150 | 0.4760          | 0.8653    | 0.8976 | 0.8812 | 0.8572   |
| 0.5724        | 4.48  | 1200 | 0.4699          | 0.8659    | 0.8835 | 0.8746 | 0.8482   |
| 0.5724        | 4.66  | 1250 | 0.4865          | 0.8729    | 0.8822 | 0.8775 | 0.8519   |
| 0.5724        | 4.85  | 1300 | 0.4763          | 0.8626    | 0.9023 | 0.8820 | 0.8586   |
| 0.5724        | 5.04  | 1350 | 0.4676          | 0.8653    | 0.8941 | 0.8794 | 0.8564   |
| 0.5724        | 5.22  | 1400 | 0.4979          | 0.8672    | 0.8850 | 0.8760 | 0.8494   |
| 0.5724        | 5.41  | 1450 | 0.4749          | 0.8648    | 0.8965 | 0.8804 | 0.8566   |
| 0.5092        | 5.6   | 1500 | 0.5003          | 0.8686    | 0.8720 | 0.8703 | 0.8410   |
| 0.5092        | 5.78  | 1550 | 0.4635          | 0.8713    | 0.8872 | 0.8792 | 0.8547   |
| 0.5092        | 5.97  | 1600 | 0.4615          | 0.8653    | 0.8928 | 0.8788 | 0.8543   |
| 0.5092        | 6.16  | 1650 | 0.4785          | 0.8677    | 0.8937 | 0.8805 | 0.8556   |
| 0.5092        | 6.34  | 1700 | 0.4856          | 0.8728    | 0.8813 | 0.8771 | 0.8535   |
| 0.5092        | 6.53  | 1750 | 0.4681          | 0.8695    | 0.8917 | 0.8805 | 0.8574   |
| 0.5092        | 6.72  | 1800 | 0.4633          | 0.8683    | 0.8950 | 0.8814 | 0.8586   |
| 0.5092        | 6.9   | 1850 | 0.4887          | 0.8787    | 0.8655 | 0.8720 | 0.8432   |
| 0.5092        | 7.09  | 1900 | 0.4807          | 0.8706    | 0.8759 | 0.8733 | 0.8476   |
| 0.5092        | 7.28  | 1950 | 0.4613          | 0.8723    | 0.8935 | 0.8828 | 0.8607   |
| 0.4572        | 7.46  | 2000 | 0.4582          | 0.8729    | 0.8861 | 0.8794 | 0.8545   |
| 0.4572        | 7.65  | 2050 | 0.4784          | 0.8794    | 0.8681 | 0.8737 | 0.8476   |
| 0.4572        | 7.84  | 2100 | 0.4749          | 0.8710    | 0.8798 | 0.8754 | 0.8504   |
| 0.4572        | 8.02  | 2150 | 0.4755          | 0.8721    | 0.8828 | 0.8774 | 0.8531   |
| 0.4572        | 8.21  | 2200 | 0.4875          | 0.8736    | 0.8668 | 0.8702 | 0.8463   |
| 0.4572        | 8.4   | 2250 | 0.4763          | 0.8807    | 0.8664 | 0.8735 | 0.8480   |
| 0.4572        | 8.58  | 2300 | 0.4795          | 0.8745    | 0.8644 | 0.8694 | 0.8445   |
| 0.4572        | 8.77  | 2350 | 0.4822          | 0.8739    | 0.8616 | 0.8677 | 0.8385   |
| 0.4572        | 8.96  | 2400 | 0.4824          | 0.8761    | 0.8774 | 0.8768 | 0.8510   |
| 0.4572        | 9.14  | 2450 | 0.4818          | 0.8748    | 0.8608 | 0.8677 | 0.8400   |
| 0.4061        | 9.33  | 2500 | 0.4814          | 0.8795    | 0.8712 | 0.8753 | 0.8488   |
| 0.4061        | 9.51  | 2550 | 0.4846          | 0.8754    | 0.8796 | 0.8775 | 0.8510   |
| 0.4061        | 9.7   | 2600 | 0.5112          | 0.8758    | 0.8718 | 0.8738 | 0.8461   |
| 0.4061        | 9.89  | 2650 | 0.5002          | 0.8689    | 0.8701 | 0.8695 | 0.8461   |
| 0.4061        | 10.07 | 2700 | 0.5163          | 0.8769    | 0.8605 | 0.8686 | 0.8391   |
| 0.4061        | 10.26 | 2750 | 0.4947          | 0.8733    | 0.8774 | 0.8754 | 0.8510   |
| 0.4061        | 10.45 | 2800 | 0.4895          | 0.8795    | 0.8850 | 0.8822 | 0.8599   |
| 0.4061        | 10.63 | 2850 | 0.4984          | 0.8737    | 0.8705 | 0.8721 | 0.8457   |
| 0.4061        | 10.82 | 2900 | 0.4952          | 0.8733    | 0.8779 | 0.8756 | 0.8521   |
| 0.4061        | 11.01 | 2950 | 0.5012          | 0.8720    | 0.8644 | 0.8682 | 0.8422   |
| 0.3677        | 11.19 | 3000 | 0.4994          | 0.8717    | 0.8751 | 0.8734 | 0.8486   |
| 0.3677        | 11.38 | 3050 | 0.5002          | 0.875     | 0.8777 | 0.8763 | 0.8529   |
| 0.3677        | 11.57 | 3100 | 0.5039          | 0.8724    | 0.8735 | 0.8730 | 0.8490   |
| 0.3677        | 11.75 | 3150 | 0.5094          | 0.8729    | 0.8642 | 0.8686 | 0.8416   |
| 0.3677        | 11.94 | 3200 | 0.5059          | 0.8731    | 0.8673 | 0.8702 | 0.8443   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2