|
--- |
|
language: |
|
- en |
|
tags: |
|
- pytorch |
|
- causal-lm |
|
- pythia |
|
license: apache-2.0 |
|
datasets: |
|
- Anthropic/hh-rlhf |
|
--- |
|
|
|
[Pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) DPO finetuned using original DPO code with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) for 1 epoch. |
|
|
|
Checkpoints are also uploaded. |
|
|
|
Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/direct-preference-optimization/tree/main) |
|
|
|
[wandb log](https://wandb.ai/lauraomahony999/pythia-dpo/runs/0mhjakjz) |
|
|
|
See [Pythia-1b](https://huggingface.co/EleutherAI/pythia-1b) for model details [(paper)](https://arxiv.org/abs/2101.00027). |
|
|
|
See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). |
|
|
|
You can cite these models if they are helpful as follows: |
|
|
|
<pre> |
|
@inproceedings{o2024attributing, |
|
title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, |
|
author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, |
|
booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, |
|
year={2024} |
|
} |
|
</pre> |
|
|
|
hf (pretrained=lomahony/pythia-1b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 0|acc | 0.2602|± |0.0128| |
|
| | |none | 0|acc_norm | 0.2867|± |0.0132| |
|
|arc_easy | 1|none | 0|acc | 0.5859|± |0.0101| |
|
| | |none | 0|acc_norm | 0.5008|± |0.0103| |
|
|boolq | 2|none | 0|acc | 0.6205|± |0.0085| |
|
|hellaswag | 1|none | 0|acc | 0.3895|± |0.0049| |
|
| | |none | 0|acc_norm | 0.4872|± |0.0050| |
|
|lambada_openai| 1|none | 0|perplexity | 6.9417|± |0.2019| |
|
| | |none | 0|acc | 0.5550|± |0.0069| |
|
|openbookqa | 1|none | 0|acc | 0.2140|± |0.0184| |
|
| | |none | 0|acc_norm | 0.3220|± |0.0209| |
|
|piqa | 1|none | 0|acc | 0.7193|± |0.0105| |
|
| | |none | 0|acc_norm | 0.7008|± |0.0107| |
|
|sciq | 1|none | 0|acc | 0.8450|± |0.0115| |
|
| | |none | 0|acc_norm | 0.7600|± |0.0135| |
|
|wikitext | 2|none | 0|word_perplexity|17.2316|± |N/A | |
|
| | |none | 0|byte_perplexity| 1.7029|± |N/A | |
|
| | |none | 0|bits_per_byte | 0.7680|± |N/A | |
|
|winogrande | 1|none | 0|acc | 0.5367|± |0.0140| |
|
|
|
hf (pretrained=lomahony/pythia-1b-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 5|acc | 0.2662|± |0.0129| |
|
| | |none | 5|acc_norm | 0.3003|± |0.0134| |
|
|arc_easy | 1|none | 5|acc | 0.6103|± |0.0100| |
|
| | |none | 5|acc_norm | 0.5892|± |0.0101| |
|
|boolq | 2|none | 5|acc | 0.6284|± |0.0085| |
|
|hellaswag | 1|none | 5|acc | 0.3841|± |0.0049| |
|
| | |none | 5|acc_norm | 0.4845|± |0.0050| |
|
|lambada_openai| 1|none | 5|perplexity | 9.6301|± |0.2809| |
|
| | |none | 5|acc | 0.4865|± |0.0070| |
|
|openbookqa | 1|none | 5|acc | 0.2020|± |0.0180| |
|
| | |none | 5|acc_norm | 0.3300|± |0.0210| |
|
|piqa | 1|none | 5|acc | 0.7122|± |0.0106| |
|
| | |none | 5|acc_norm | 0.7046|± |0.0106| |
|
|sciq | 1|none | 5|acc | 0.9030|± |0.0094| |
|
| | |none | 5|acc_norm | 0.8980|± |0.0096| |
|
|wikitext | 2|none | 5|word_perplexity|17.2316|± |N/A | |
|
| | |none | 5|byte_perplexity| 1.7029|± |N/A | |
|
| | |none | 5|bits_per_byte | 0.7680|± |N/A | |
|
|winogrande | 1|none | 5|acc | 0.5296|± |0.0140| |
|
|
|
|