lombardata's picture
Upload README.md
439b1fe verified
---
language:
- eng
license: cc0-1.0
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
base_model: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
model-index:
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
results: []
---
drone-DinoVdeau-from-probs is a fine-tuned version of [drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs](https://huggingface.co/drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs). It achieves the following results on the test set:
- Loss: 0.4672
- RMSE: 0.1553
- MAE: 0.1147
- KL Divergence: 0.3577
---
# Model description
drone-DinoVdeau-from-probs is a model built on top of drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
---
# Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
---
# Training and evaluation data
Details on the estimated number of images for each class are given in the following table:
| Class | train | test | val | Total |
|:------------------------|--------:|-------:|------:|--------:|
| Acropore_branched | 1220 | 363 | 362 | 1945 |
| Acropore_digitised | 586 | 195 | 189 | 970 |
| Acropore_tabular | 308 | 133 | 119 | 560 |
| Algae | 4777 | 1372 | 1384 | 7533 |
| Dead_coral | 2513 | 671 | 693 | 3877 |
| Millepore | 136 | 55 | 59 | 250 |
| No_acropore_encrusting | 252 | 88 | 93 | 433 |
| No_acropore_massive | 2158 | 725 | 726 | 3609 |
| No_acropore_sub_massive | 2036 | 582 | 612 | 3230 |
| Rock | 5976 | 1941 | 1928 | 9845 |
| Rubble | 4851 | 1486 | 1474 | 7811 |
| Sand | 6155 | 2019 | 1990 | 10164 |
---
# Training procedure
## Training hyperparameters
The following hyperparameters were used during training:
- **Number of Epochs**: 79.0
- **Learning Rate**: 0.001
- **Train Batch Size**: 64
- **Eval Batch Size**: 64
- **Optimizer**: Adam
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- **Freeze Encoder**: Yes
- **Data Augmentation**: Yes
## Data Augmentation
Data were augmented using the following transformations :
Train Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **RandomHorizontalFlip**: probability=0.25
- **RandomVerticalFlip**: probability=0.25
- **ColorJiggle**: probability=0.25
- **RandomPerspective**: probability=0.25
- **Normalize**: probability=1.00
Val Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **Normalize**: probability=1.00
## Training results
Epoch | Validation Loss | MAE | RMSE | KL div | Learning Rate
--- | --- | --- | --- | --- | ---
1 | 0.5005590319633484 | 0.1552 | 0.1904 | 0.1025 | 0.001
2 | 0.47547808289527893 | 0.1245 | 0.1681 | 0.5180 | 0.001
3 | 0.47452571988105774 | 0.1227 | 0.1675 | 0.6862 | 0.001
4 | 0.47420722246170044 | 0.1255 | 0.1672 | 0.3212 | 0.001
5 | 0.47245556116104126 | 0.1224 | 0.1653 | 0.5072 | 0.001
6 | 0.4725925624370575 | 0.1216 | 0.1657 | 0.6710 | 0.001
7 | 0.4731809198856354 | 0.1255 | 0.1655 | 0.3162 | 0.001
8 | 0.47284314036369324 | 0.1260 | 0.1651 | 0.2719 | 0.001
9 | 0.4707973003387451 | 0.1206 | 0.1639 | 0.6393 | 0.001
10 | 0.4732784628868103 | 0.1230 | 0.1654 | 0.5359 | 0.001
11 | 0.47162503004074097 | 0.1253 | 0.1647 | 0.2479 | 0.001
12 | 0.47083696722984314 | 0.1244 | 0.1631 | 0.3119 | 0.001
13 | 0.47152063250541687 | 0.1230 | 0.1635 | 0.3694 | 0.001
14 | 0.47212228178977966 | 0.1216 | 0.1653 | 0.5592 | 0.001
15 | 0.47012239694595337 | 0.1213 | 0.1628 | 0.4936 | 0.001
16 | 0.4718552827835083 | 0.1229 | 0.1646 | 0.2820 | 0.001
17 | 0.46933484077453613 | 0.1200 | 0.1621 | 0.5294 | 0.001
18 | 0.4710436165332794 | 0.1216 | 0.1635 | 0.4093 | 0.001
19 | 0.4698491394519806 | 0.1219 | 0.1622 | 0.2918 | 0.001
20 | 0.4691685736179352 | 0.1190 | 0.1617 | 0.4772 | 0.001
21 | 0.46830564737319946 | 0.1204 | 0.1606 | 0.4336 | 0.001
22 | 0.47239789366722107 | 0.1183 | 0.1650 | 0.7962 | 0.001
23 | 0.47136834263801575 | 0.1223 | 0.1641 | 0.2854 | 0.001
24 | 0.4706868529319763 | 0.1207 | 0.1633 | 0.4206 | 0.001
25 | 0.46786901354789734 | 0.1185 | 0.1606 | 0.5436 | 0.001
26 | 0.47084224224090576 | 0.1192 | 0.1634 | 0.4964 | 0.001
27 | 0.4695045053958893 | 0.1185 | 0.1625 | 0.6399 | 0.001
28 | 0.4700873792171478 | 0.1184 | 0.1624 | 0.5737 | 0.001
29 | 0.4698559045791626 | 0.1200 | 0.1624 | 0.4459 | 0.001
30 | 0.4722815454006195 | 0.1254 | 0.1643 | 0.2726 | 0.001
31 | 0.46958214044570923 | 0.1184 | 0.1622 | 0.5308 | 0.001
32 | 0.46677276492118835 | 0.1175 | 0.1593 | 0.4200 | 0.0001
33 | 0.46626824140548706 | 0.1177 | 0.1587 | 0.3529 | 0.0001
34 | 0.46665358543395996 | 0.1181 | 0.1592 | 0.3588 | 0.0001
35 | 0.46587392687797546 | 0.1160 | 0.1584 | 0.4813 | 0.0001
36 | 0.46578526496887207 | 0.1173 | 0.1581 | 0.3504 | 0.0001
37 | 0.4654408395290375 | 0.1158 | 0.1578 | 0.3919 | 0.0001
38 | 0.46546319127082825 | 0.1166 | 0.1580 | 0.4058 | 0.0001
39 | 0.465843141078949 | 0.1174 | 0.1585 | 0.4118 | 0.0001
40 | 0.46561121940612793 | 0.1170 | 0.1579 | 0.3564 | 0.0001
41 | 0.4657152593135834 | 0.1171 | 0.1582 | 0.3573 | 0.0001
42 | 0.4651602804660797 | 0.1155 | 0.1579 | 0.5042 | 0.0001
43 | 0.4651065468788147 | 0.1157 | 0.1575 | 0.4462 | 0.0001
44 | 0.46537330746650696 | 0.1166 | 0.1579 | 0.4236 | 0.0001
45 | 0.46489208936691284 | 0.1151 | 0.1574 | 0.4510 | 0.0001
46 | 0.46484702825546265 | 0.1157 | 0.1575 | 0.4490 | 0.0001
47 | 0.4648602306842804 | 0.1152 | 0.1574 | 0.4751 | 0.0001
48 | 0.4647873342037201 | 0.1151 | 0.1575 | 0.5305 | 0.0001
49 | 0.4647849500179291 | 0.1154 | 0.1574 | 0.4799 | 0.0001
50 | N/A | 0.0000 | 0.0000 | 0.0000 | 0.0001
51 | 0.465638667345047 | 0.1151 | 0.1582 | 0.4879 | 0.0001
52 | 0.46429532766342163 | 0.1155 | 0.1566 | 0.4199 | 0.0001
53 | 0.46441230177879333 | 0.1156 | 0.1569 | 0.3880 | 0.0001
54 | 0.4646008610725403 | 0.1148 | 0.1569 | 0.4229 | 0.0001
55 | 0.4644174873828888 | 0.1159 | 0.1569 | 0.4009 | 0.0001
56 | 0.464743047952652 | 0.1164 | 0.1572 | 0.3405 | 0.0001
57 | 0.4645179808139801 | 0.1152 | 0.1569 | 0.4188 | 0.0001
58 | 0.465102881193161 | 0.1164 | 0.1576 | 0.3079 | 0.0001
59 | 0.4644688367843628 | 0.1150 | 0.1570 | 0.4339 | 1e-05
60 | 0.46417686343193054 | 0.1150 | 0.1566 | 0.3894 | 1e-05
61 | 0.4639436900615692 | 0.1146 | 0.1563 | 0.4145 | 1e-05
62 | 0.4641311764717102 | 0.1148 | 0.1565 | 0.4064 | 1e-05
63 | 0.4643491506576538 | 0.1149 | 0.1565 | 0.3542 | 1e-05
64 | 0.46402981877326965 | 0.1150 | 0.1564 | 0.3718 | 1e-05
65 | 0.4640822410583496 | 0.1152 | 0.1565 | 0.4128 | 1e-05
66 | 0.46441909670829773 | 0.1145 | 0.1570 | 0.4988 | 1e-05
67 | 0.46383005380630493 | 0.1151 | 0.1562 | 0.4122 | 1e-05
68 | 0.4639807641506195 | 0.1144 | 0.1565 | 0.4579 | 1e-05
69 | 0.4637599587440491 | 0.1143 | 0.1561 | 0.4197 | 1e-05
70 | 0.46392253041267395 | 0.1145 | 0.1563 | 0.4286 | 1e-05
71 | 0.46406444907188416 | 0.1153 | 0.1563 | 0.3542 | 1e-05
72 | 0.46417826414108276 | 0.1147 | 0.1566 | 0.4250 | 1e-05
73 | 0.4637835919857025 | 0.1140 | 0.1561 | 0.4397 | 1e-05
74 | 0.463798850774765 | 0.1145 | 0.1563 | 0.4437 | 1e-05
75 | 0.46379053592681885 | 0.1145 | 0.1561 | 0.4049 | 1e-05
76 | 0.4639701247215271 | 0.1141 | 0.1565 | 0.4926 | 1.0000000000000002e-06
77 | 0.463869571685791 | 0.1142 | 0.1562 | 0.4427 | 1.0000000000000002e-06
78 | 0.46388140320777893 | 0.1145 | 0.1563 | 0.4293 | 1.0000000000000002e-06
79 | 0.46412238478660583 | 0.1147 | 0.1564 | 0.3765 | 1.0000000000000002e-06
---
# Framework Versions
- **Transformers**: 4.41.0
- **Pytorch**: 2.5.0+cu124
- **Datasets**: 3.0.2
- **Tokenizers**: 0.19.1