lombardata's picture
Upload README.md
0da5aab verified
---
language:
- eng
license: wtfpl
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
base_model: microsoft/resnet-50
model-index:
- name: resnet-50-2024_09_13-batch-size32_epochs150_freeze
results: []
---
DinoVd'eau is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50). It achieves the following results on the test set:
- Loss: nan
- F1 Micro: 0.0002
- F1 Macro: 0.0002
- Roc Auc: 0.4995
- Accuracy: 0.0003
---
# Model description
DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this [Git repository](https://github.com/SeatizenDOI/DinoVdeau).
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc) and [Victor Illien](https://huggingface.co/groderg)
---
# Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
---
# Training and evaluation data
Details on the number of images for each class are given in the following table:
| Class | train | val | test | Total |
|:-------------------------|--------:|------:|-------:|--------:|
| Acropore_branched | 1469 | 464 | 475 | 2408 |
| Acropore_digitised | 568 | 160 | 160 | 888 |
| Acropore_sub_massive | 150 | 50 | 43 | 243 |
| Acropore_tabular | 999 | 297 | 293 | 1589 |
| Algae_assembly | 2546 | 847 | 845 | 4238 |
| Algae_drawn_up | 367 | 126 | 127 | 620 |
| Algae_limestone | 1652 | 557 | 563 | 2772 |
| Algae_sodding | 3148 | 984 | 985 | 5117 |
| Atra/Leucospilota | 1084 | 348 | 360 | 1792 |
| Bleached_coral | 219 | 71 | 70 | 360 |
| Blurred | 191 | 67 | 62 | 320 |
| Dead_coral | 1979 | 642 | 643 | 3264 |
| Fish | 2018 | 656 | 647 | 3321 |
| Homo_sapiens | 161 | 62 | 59 | 282 |
| Human_object | 157 | 58 | 55 | 270 |
| Living_coral | 406 | 154 | 141 | 701 |
| Millepore | 385 | 127 | 125 | 637 |
| No_acropore_encrusting | 441 | 130 | 154 | 725 |
| No_acropore_foliaceous | 204 | 36 | 46 | 286 |
| No_acropore_massive | 1031 | 336 | 338 | 1705 |
| No_acropore_solitary | 202 | 53 | 48 | 303 |
| No_acropore_sub_massive | 1401 | 433 | 422 | 2256 |
| Rock | 4489 | 1495 | 1473 | 7457 |
| Rubble | 3092 | 1030 | 1001 | 5123 |
| Sand | 5842 | 1939 | 1938 | 9719 |
| Sea_cucumber | 1408 | 439 | 447 | 2294 |
| Sea_urchins | 327 | 107 | 111 | 545 |
| Sponge | 269 | 96 | 105 | 470 |
| Syringodium_isoetifolium | 1212 | 392 | 391 | 1995 |
| Thalassodendron_ciliatum | 782 | 261 | 260 | 1303 |
| Useless | 579 | 193 | 193 | 965 |
---
# Training procedure
## Training hyperparameters
The following hyperparameters were used during training:
- **Number of Epochs**: 150
- **Learning Rate**: 0.001
- **Train Batch Size**: 32
- **Eval Batch Size**: 32
- **Optimizer**: Adam
- **LR Scheduler Type**: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- **Freeze Encoder**: Yes
- **Data Augmentation**: Yes
## Data Augmentation
Data were augmented using the following transformations :
Train Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **RandomHorizontalFlip**: probability=0.25
- **RandomVerticalFlip**: probability=0.25
- **ColorJiggle**: probability=0.25
- **RandomPerspective**: probability=0.25
- **Normalize**: probability=1.00
Val Transforms
- **PreProcess**: No additional parameters
- **Resize**: probability=1.00
- **Normalize**: probability=1.00
## Training results
Epoch | Validation Loss | Accuracy | F1 Macro | F1 Micro | Learning Rate
--- | --- | --- | --- | --- | ---
1 | nan | 0.0 | 0.0 | 0.0 | 0.001
2 | nan | 0.000693000693000693 | 0.00031409501374165687 | 0.00040576181781294376 | 0.001
3 | nan | 0.0017325017325017325 | 0.0007850525985241011 | 0.0010049241282283187 | 0.001
4 | nan | 0.0 | 0.0 | 0.0 | 0.001
5 | nan | 0.0010395010395010396 | 0.00047177229124076113 | 0.0006430178973314757 | 0.001
6 | nan | 0.0003465003465003465 | 0.00015712153350616704 | 0.000206782464846981 | 0.001
7 | nan | 0.0 | 0.0 | 0.0 | 0.0001
8 | nan | 0.0003465003465003465 | 0.00015710919088766695 | 0.0002061218179944347 | 0.0001
9 | nan | 0.0 | 0.0 | 0.0 | 0.0001
10 | nan | 0.000693000693000693 | 0.00031441597233139445 | 0.0004230565838180856 | 0.0001
11 | nan | 0.0 | 0.0 | 0.0 | 0.0001
---
# CO2 Emissions
The estimated CO2 emissions for training this model are documented below:
- **Emissions**: 0.12280230273705112 grams of CO2
- **Source**: Code Carbon
- **Training Type**: fine-tuning
- **Geographical Location**: Brest, France
- **Hardware Used**: NVIDIA Tesla V100 PCIe 32 Go
---
# Framework Versions
- **Transformers**: 4.41.1
- **Pytorch**: 2.3.0+cu121
- **Datasets**: 2.19.1
- **Tokenizers**: 0.19.1