language:
- en
- zh
license: llama3
tags:
- Cantonese
- chat
- Llama3
datasets:
- jed351/cantonese-wikipedia
- lordjia/Cantonese_English_Translation
pipeline_tag: text-generation
model-index:
- name: Llama-3-Cantonese-8B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 66.69
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.79
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 8.23
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.82
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.48
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Llama-3-Cantonese-8B-Instruct
name: Open LLM Leaderboard
Llama-3-Cantonese-8B-Instruct
Model Overview / 模型概述
Llama-3-Cantonese-8B-Instruct is a Cantonese language model based on Meta-Llama-3-8B-Instruct, fine-tuned using LoRA. It aims to enhance Cantonese text generation and comprehension capabilities, supporting various tasks such as dialogue generation, text summarization, and question-answering.
Llama-3-Cantonese-8B-Instruct係基於Meta-Llama-3-8B-Struct嘅粵語語言模型,使用LoRA進行微調。 它旨在提高粵語文本的生成和理解能力,支持各種任務,如對話生成、文本摘要和問答。
Model Features / 模型特性
- Base Model: Meta-Llama-3-8B-Instruct
- Fine-tuning Method: LoRA instruction tuning
- Training Steps: 4562 steps
- Primary Language: Cantonese / 粵語
- Datasets:
- Training Tools: LLaMA-Factory
Quantized Version / 量化版本
A 4-bit quantized version of this model is also available: llama3-cantonese-8b-instruct-q4_0.gguf.
此模型的4位量化版本也可用:llama3-cantonese-8b-instruct-q4_0.gguf。
Alternative Model Recommendations / 備選模型舉薦
For alternatives, consider the following models, both fine-tuned by LordJia on Cantonese language tasks:
揾其他嘅話,可以諗下呢啲模型,全部都係LordJia用廣東話嘅工作調教好嘅:
- Qwen2-Cantonese-7B-Instruct based on Qwen2-7B-Instruct.
- Llama-3.1-Cantonese-8B-Instruct based on Meta-Llama-3.1-8B-Instruct.
License / 許可證
This model is licensed under the Llama 3 Community License. Please review the terms before use.
此模型根據Llama 3社區許可證獲得許可。 請在使用前仔細閱讀呢啲條款。
Contributors / 貢獻
- LordJia https://ai.chao.cool
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 24.16 |
IFEval (0-Shot) | 66.69 |
BBH (3-Shot) | 26.79 |
MATH Lvl 5 (4-Shot) | 8.23 |
GPQA (0-shot) | 5.82 |
MuSR (0-shot) | 9.48 |
MMLU-PRO (5-shot) | 27.94 |