norbert3-small / README.md
davda54's picture
Update README.md
9d1af0b
|
raw
history blame
1.37 kB
---
language:
- 'no'
- nb
- nn
inference: false
tags:
- BERT
- NorBERT
- Norwegian
- encoder
license: cc-by-4.0
---
# NorBERT 3 small
## Other sizes:
- [NorBERT 3 xs (15M)](https://huggingface.co/ltg/norbert3-xs)
- [NorBERT 3 small (40M)](https://huggingface.co/ltg/norbert3-small)
- [NorBERT 3 base (123M)](https://huggingface.co/ltg/norbert3-base)
- [NorBERT 3 large (323M)](https://huggingface.co/ltg/norbert3-large)
## Example usage
This model currently needs a custom wrapper from `modeling_norbert.py`. Then you can use it like this:
```python
import torch
from transformers import AutoTokenizer
from modeling_norbert import NorbertForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("path/to/folder")
bert = NorbertForMaskedLM.from_pretrained("path/to/folder")
mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
output_p = bert(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)
# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))
```
The following classes are currently implemented: `NorbertForMaskedLM`, `NorbertForSequenceClassification`, `NorbertForTokenClassification`, `NorbertForQuestionAnswering` and `NorbertForMultipleChoice`.