luciagil's picture
🍻 cheers
bd3b281 verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21K
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: Human_action_classifier
    results: []

Human_action_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21K on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5303
  • Accuracy: 0.8496

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4545 0.16 100 1.3145 0.6706
1.2568 0.32 200 1.0387 0.7179
1.3145 0.48 300 1.0027 0.7135
1.0866 0.63 400 0.8883 0.7377
1.0036 0.79 500 0.8973 0.7321
1.1811 0.95 600 0.8048 0.7571
0.9242 1.11 700 0.9095 0.7274
0.9477 1.27 800 0.8037 0.7619
0.8634 1.43 900 0.7938 0.7643
1.0098 1.59 1000 0.7328 0.7766
0.8176 1.75 1100 0.8065 0.7516
0.8072 1.9 1200 0.7768 0.7694
0.7739 2.06 1300 0.7624 0.7726
0.6851 2.22 1400 0.6687 0.7940
0.7496 2.38 1500 0.6806 0.7948
0.7352 2.54 1600 0.6943 0.7897
0.7311 2.7 1700 0.7353 0.7714
0.7181 2.86 1800 0.6831 0.7921
0.5986 3.02 1900 0.6930 0.7897
0.5716 3.17 2000 0.6685 0.8048
0.5218 3.33 2100 0.7152 0.7917
0.8469 3.49 2200 0.6405 0.8020
0.5783 3.65 2300 0.6728 0.7956
0.7202 3.81 2400 0.6007 0.8155
0.5525 3.97 2500 0.6559 0.8056
0.519 4.13 2600 0.5868 0.8222
0.6171 4.29 2700 0.6157 0.8103
0.5401 4.44 2800 0.6120 0.8083
0.6105 4.6 2900 0.5619 0.8325
0.7497 4.76 3000 0.5859 0.8302
0.4856 4.92 3100 0.5833 0.8262
0.4959 5.08 3200 0.5704 0.8329
0.4413 5.24 3300 0.6217 0.8190
0.4513 5.4 3400 0.5750 0.8294
0.3987 5.56 3500 0.5826 0.8341
0.4395 5.71 3600 0.5754 0.8385
0.4669 5.87 3700 0.5653 0.8357
0.4005 6.03 3800 0.5424 0.8377
0.4457 6.19 3900 0.5620 0.8393
0.3693 6.35 4000 0.5411 0.8413
0.2933 6.51 4100 0.5325 0.8484
0.2603 6.67 4200 0.5360 0.8476
0.3364 6.83 4300 0.5303 0.8496
0.3639 6.98 4400 0.5316 0.8492

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2