SentenceTransformer based on thenlper/gte-base
This is a sentence-transformers model finetuned from thenlper/gte-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'And then comes the figure of the human in the age of the Anthropocene, the era when humans act as a geological force on the planet, changing its climate for millennia to come.',
'â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99 For, while the Anthropocene, as a name, claims a generalised human agency responsible for the myriad ecological crises gathered under its auspice, it is simply not the case that, as Ghosh argues, â\x80\x9cevery human being, past and present, has contributed to the present cycle of climate changeâ\x80\x9d (2016, 115).',
'Minneapolis: University of Minnesota Press, 2007.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 134,934 training samples
- Columns:
inp1
,inp2
, andscore
- Approximate statistics based on the first 1000 samples:
inp1 inp2 score type string string float details - min: 8 tokens
- mean: 38.09 tokens
- max: 512 tokens
- min: 8 tokens
- mean: 32.43 tokens
- max: 512 tokens
- min: -1.0
- mean: -0.8
- max: 1.0
- Samples:
inp1 inp2 score Following the lead of John Guillory in Cultural Capital: The Problem of Literary Canon Formation, I would argue that such theoretical arguments characteristically concern an âimaginary canonââimaginary in that there is no speciï¬cally deï¬ned body of works or authors that make up such a canon.
âBrooksâs theory,â guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.
1.0
Cultural Capital: The Problem of Literary Canon Formation.
âBrooksâs theory,â guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.
1.0
A partic- ularly good example of the complex operations of critical attention and peda- gogical appropriation occurs with Zora Neale Hurstonâs Their Eyes Were Watching God.
Similarly, in her article comparing the image patterns in Zora Neale Hurstonâs Their Eyes Were Watching God and Beloved, Glenda B. Weathers also observes the dichotomous function of the trees in Beloved and argues, âThey posit knowledge of both good and evilâ (2005, 201) for black Americans seek- ing freedom from slavery and oppression.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0119 | 100 | 2.2069 |
0.0237 | 200 | 2.3883 |
0.0119 | 100 | 1.8358 |
0.0237 | 200 | 1.974 |
0.0356 | 300 | 1.8488 |
0.0474 | 400 | 1.8799 |
0.0593 | 500 | 2.0132 |
0.0711 | 600 | 1.8831 |
0.0830 | 700 | 1.601 |
0.0948 | 800 | 2.0316 |
0.1067 | 900 | 1.9483 |
0.1185 | 1000 | 1.6585 |
0.1304 | 1100 | 1.7986 |
0.1422 | 1200 | 1.4978 |
0.1541 | 1300 | 1.6035 |
0.1660 | 1400 | 1.9908 |
0.1778 | 1500 | 1.2896 |
0.1897 | 1600 | 1.97 |
0.2015 | 1700 | 1.9622 |
0.2134 | 1800 | 1.4706 |
0.2252 | 1900 | 1.5162 |
0.2371 | 2000 | 1.6988 |
0.2489 | 2100 | 1.6552 |
0.2608 | 2200 | 1.7779 |
0.2726 | 2300 | 1.9001 |
0.2845 | 2400 | 1.7802 |
0.2963 | 2500 | 1.6582 |
0.3082 | 2600 | 1.377 |
0.3201 | 2700 | 1.473 |
0.3319 | 2800 | 1.441 |
0.3438 | 2900 | 1.8727 |
0.3556 | 3000 | 1.1545 |
0.3675 | 3100 | 1.7319 |
0.3793 | 3200 | 1.9862 |
0.3912 | 3300 | 1.467 |
0.4030 | 3400 | 2.125 |
0.4149 | 3500 | 2.0474 |
0.4267 | 3600 | 1.7078 |
0.4386 | 3700 | 1.7791 |
0.4505 | 3800 | 1.6368 |
0.4623 | 3900 | 1.4451 |
0.4742 | 4000 | 1.5612 |
0.4860 | 4100 | 1.3163 |
0.4979 | 4200 | 1.5675 |
0.5097 | 4300 | 1.2766 |
0.5216 | 4400 | 1.4506 |
0.5334 | 4500 | 0.9601 |
0.5453 | 4600 | 1.4118 |
0.5571 | 4700 | 1.3951 |
0.5690 | 4800 | 1.2048 |
0.5808 | 4900 | 1.1108 |
0.5927 | 5000 | 1.5696 |
0.6046 | 5100 | 1.4223 |
0.6164 | 5200 | 1.1789 |
0.6283 | 5300 | 1.1573 |
0.6401 | 5400 | 1.4457 |
0.6520 | 5500 | 1.6622 |
0.6638 | 5600 | 1.2699 |
0.6757 | 5700 | 1.0191 |
0.6875 | 5800 | 1.2764 |
0.6994 | 5900 | 0.8999 |
0.6046 | 5100 | 1.5085 |
0.6164 | 5200 | 1.3738 |
0.6283 | 5300 | 1.0537 |
0.6401 | 5400 | 1.3578 |
0.6520 | 5500 | 1.6301 |
0.6638 | 5600 | 1.091 |
0.6757 | 5700 | 0.9261 |
0.6875 | 5800 | 1.1276 |
0.6994 | 5900 | 0.7678 |
0.6047 | 5100 | 1.2021 |
0.6166 | 5200 | 0.8787 |
0.6284 | 5300 | 0.6169 |
0.6403 | 5400 | 0.9881 |
0.6521 | 5500 | 1.1844 |
0.6640 | 5600 | 1.032 |
0.6758 | 5700 | 0.8486 |
0.6877 | 5800 | 1.4845 |
0.6995 | 5900 | 1.4 |
0.7114 | 6000 | 0.9685 |
0.7233 | 6100 | 0.9288 |
0.7351 | 6200 | 1.4682 |
0.7470 | 6300 | 0.6551 |
0.7588 | 6400 | 0.5513 |
0.7707 | 6500 | 0.6092 |
0.7825 | 6600 | 1.3235 |
0.7944 | 6700 | 0.4917 |
0.8063 | 6800 | 0.8944 |
0.8181 | 6900 | 0.9298 |
0.8300 | 7000 | 1.1134 |
0.8418 | 7100 | 0.8254 |
0.8537 | 7200 | 1.3363 |
0.8655 | 7300 | 0.6571 |
0.8774 | 7400 | 0.8209 |
0.8893 | 7500 | 0.6508 |
0.9011 | 7600 | 1.1972 |
0.9130 | 7700 | 1.1095 |
0.9248 | 7800 | 0.8772 |
0.9367 | 7900 | 1.0623 |
0.9485 | 8000 | 0.6073 |
0.9604 | 8100 | 0.8292 |
0.9723 | 8200 | 0.6765 |
0.9841 | 8300 | 0.5103 |
0.9960 | 8400 | 1.0618 |
1.0078 | 8500 | 0.5134 |
1.0197 | 8600 | 0.5203 |
1.0315 | 8700 | 0.6634 |
1.0434 | 8800 | 0.6644 |
1.0553 | 8900 | 0.7459 |
1.0671 | 9000 | 0.5969 |
1.0790 | 9100 | 0.5473 |
1.0908 | 9200 | 0.5495 |
1.1027 | 9300 | 0.5093 |
1.1145 | 9400 | 0.7049 |
1.1264 | 9500 | 0.726 |
1.1382 | 9600 | 0.6512 |
1.1501 | 9700 | 0.5121 |
1.1620 | 9800 | 0.5977 |
1.1738 | 9900 | 0.4933 |
1.1857 | 10000 | 0.8585 |
1.1975 | 10100 | 0.2955 |
1.2094 | 10200 | 0.6972 |
1.2212 | 10300 | 0.454 |
1.2331 | 10400 | 1.1057 |
1.2450 | 10500 | 0.9724 |
1.2568 | 10600 | 0.3057 |
1.2687 | 10700 | 0.5967 |
1.2805 | 10800 | 0.7332 |
1.2924 | 10900 | 0.5382 |
1.3042 | 11000 | 0.625 |
1.3161 | 11100 | 0.5354 |
1.3280 | 11200 | 0.4289 |
1.3398 | 11300 | 0.4243 |
1.3517 | 11400 | 0.6902 |
1.3635 | 11500 | 0.4248 |
1.3754 | 11600 | 0.3743 |
1.3872 | 11700 | 0.5463 |
1.3991 | 11800 | 0.8413 |
1.4110 | 11900 | 0.4748 |
1.4228 | 12000 | 0.56 |
1.4347 | 12100 | 0.9269 |
1.4465 | 12200 | 0.4668 |
1.4584 | 12300 | 0.4842 |
1.4702 | 12400 | 0.5172 |
1.4821 | 12500 | 0.4498 |
1.4940 | 12600 | 0.4695 |
1.5058 | 12700 | 0.2144 |
1.5177 | 12800 | 0.8002 |
1.5295 | 12900 | 0.4022 |
1.5414 | 13000 | 0.4491 |
1.5532 | 13100 | 0.4798 |
1.5651 | 13200 | 0.7489 |
1.5770 | 13300 | 0.6108 |
1.5888 | 13400 | 0.3806 |
1.6007 | 13500 | 0.4164 |
1.6125 | 13600 | 0.6362 |
1.6244 | 13700 | 0.4773 |
1.6362 | 13800 | 0.4875 |
1.6481 | 13900 | 0.5577 |
1.6599 | 14000 | 0.3318 |
1.6718 | 14100 | 0.2959 |
1.6837 | 14200 | 0.3168 |
1.6955 | 14300 | 0.403 |
1.7074 | 14400 | 0.6553 |
1.7192 | 14500 | 0.5814 |
1.7311 | 14600 | 0.3407 |
1.7429 | 14700 | 0.3985 |
1.7548 | 14800 | 0.406 |
1.7667 | 14900 | 0.5986 |
1.7785 | 15000 | 0.7694 |
1.7904 | 15100 | 0.5025 |
1.8022 | 15200 | 0.7199 |
1.8141 | 15300 | 0.4215 |
1.8259 | 15400 | 0.5484 |
1.8378 | 15500 | 0.3551 |
1.8497 | 15600 | 0.3572 |
1.8615 | 15700 | 0.3536 |
1.8734 | 15800 | 0.5116 |
1.8852 | 15900 | 0.7094 |
1.8971 | 16000 | 0.4402 |
1.9089 | 16100 | 0.4095 |
1.9208 | 16200 | 0.2173 |
1.9327 | 16300 | 0.6058 |
1.9445 | 16400 | 0.7796 |
1.9564 | 16500 | 0.5642 |
1.9682 | 16600 | 0.3085 |
1.9801 | 16700 | 0.4308 |
1.9919 | 16800 | 0.3712 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.2.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for lucianli123/GTE-literary-citations
Base model
thenlper/gte-base