lucianli123 commited on
Commit
d6ef998
1 Parent(s): 9263e62

Upload 10 files

Browse files
README.md ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:134975
10
+ - loss:CoSENTLoss
11
+ - dataset_size:134934
12
+ base_model: thenlper/gte-base
13
+ datasets: []
14
+ widget:
15
+ - source_sentence: 9 postcolonial studies The Human in the Anthropocene If the problem
16
+ of global warming or climate change had not burst in on us through the 2007 Report
17
+ of the Intergovernmental Panel on Climate Change (IPCC), globalization would have
18
+ been perhaps the most important theme stoking our thoughts about being human.
19
+ sentences:
20
+ - 'Baltimore, MD: Johns Hopkins University Press, 1993.'
21
+ - Publisher contact information may be obtained at http://www.jstor.org/journals/sage.html.
22
+ - "He Decolonizing the Cosmopolitan Geospatial Imaginary of the Anthropocene Pivot\
23
+ \ 7.1 159 suggests that in discussion of the anthropogenic climate change and\
24
+ \ global warming, one has to think of these things simultaneously: â\x80\x9Cthe\
25
+ \ human-human and the nonhuman-humanâ\x80\x9D (11)."
26
+ - source_sentence: "1-18 (Article) Published by The Johns Hopkins University Press\
27
+ \ DOI: 10.1353/nlh.2012.0007 For additional information about this article Access\
28
+ \ provided by Australian National University (2 May 2013 23:47 GMT) http://muse.jhu.edu/journals/nlh/summary/v043/43.1.chakrabarty.html\
29
+ \ New Literary History, 2012, 43: 1â\x80\x9318 Postcolonial Studies and the Challenge\
30
+ \ of Climate Change Dipesh Chakrabarty For Homi K. Bhabha H owever we come to\
31
+ \ the question of postcolonial studies at this historical juncture, there are\
32
+ \ two phenomena, both topics of public debate since the early 1990s, that none\
33
+ \ of us can quite escape in our personal and collective lives at present: globalization\
34
+ \ and global warming."
35
+ sentences:
36
+ - What marks the rise of the Anthropocene proper is the fact that current geological
37
+ transformations are dominated by human action.
38
+ - Postcolonial studies and the challenge of climate change.
39
+ - How do we think of this collective human agency in the era of the Anthropocene?
40
+ - source_sentence: "Chakrabarty thus appeals for â\x80\x98non-ontological ways of\
41
+ \ thinking the humanâ\x80\x99 (2012: 13) to bring about this needed interpretive\
42
+ \ stretching."
43
+ sentences:
44
+ - "Arendt, H, (1998) The human condition, Chicago: The University of Chicago Arias-­â\x80\
45
+ \x90Maldonado, M. (2015) â\x80\x98Spelling the end of nature?"
46
+ - "â\x80\x9CPostcolonial Studies and the Challenge of Climate Change.â\x80\x9D New\
47
+ \ Literary History 43.1 (2012): 1â\x80\x9318."
48
+ - We need nonontological ways of thinking the human.
49
+ - source_sentence: "23 Chakrabarty, â\x80\x9CPostcolonial Studiesâ\x80\x9D, 11; italics\
50
+ \ in original."
51
+ sentences:
52
+ - Chakrabarty, D. Postcolonial Studies and the Challenge of Climate Change.
53
+ - "In this article, we adopt the term Anthropocene precisely to refer to these processes\
54
+ \ and phenomena, and to the associated urgency of ï¬\x81nding new ways to inhabit\
55
+ \ this present-day (and future) epoch in which we perceive Earth no longer as\
56
+ \ the framework for human action, but precisely as participating in (and increasingly\
57
+ \ partaking in the conï¬\x81guring of) that action [23] (p. 42)."
58
+ - Postcolonial Studies and the Challenge of Climate Change Dipesh Chakrabarty New
59
+ Literary History, Volume 43, Number 1, Winter 2012, pp.
60
+ - source_sentence: And then comes the figure of the human in the age of the Anthropocene,
61
+ the era when humans act as a geological force on the planet, changing its climate
62
+ for millennia to come.
63
+ sentences:
64
+ - "â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99\
65
+ \ For, while the Anthropocene, as a name, claims a generalised human agency responsible\
66
+ \ for the myriad ecological crises gathered under its auspice, it is simply not\
67
+ \ the case that, as Ghosh argues, â\x80\x9Cevery human being, past and present,\
68
+ \ has contributed to the present cycle of climate changeâ\x80\x9D (2016, 115)."
69
+ - 'Minneapolis: University of Minnesota Press, 2007.'
70
+ - 'Baltimore, MD: Johns Hopkins University Press, 1993.'
71
+ pipeline_tag: sentence-similarity
72
+ ---
73
+
74
+ # SentenceTransformer based on thenlper/gte-base
75
+
76
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
77
+
78
+ ## Model Details
79
+
80
+ ### Model Description
81
+ - **Model Type:** Sentence Transformer
82
+ - **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
83
+ - **Maximum Sequence Length:** 512 tokens
84
+ - **Output Dimensionality:** 768 tokens
85
+ - **Similarity Function:** Cosine Similarity
86
+ <!-- - **Training Dataset:** Unknown -->
87
+ <!-- - **Language:** Unknown -->
88
+ <!-- - **License:** Unknown -->
89
+
90
+ ### Model Sources
91
+
92
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
93
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
94
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
95
+
96
+ ### Full Model Architecture
97
+
98
+ ```
99
+ SentenceTransformer(
100
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
101
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
102
+ (2): Normalize()
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("sentence_transformers_model_id")
122
+ # Run inference
123
+ sentences = [
124
+ 'And then comes the figure of the human in the age of the Anthropocene, the era when humans act as a geological force on the planet, changing its climate for millennia to come.',
125
+ 'â\x80\x98Anthropoceneâ\x80\x99 means, after all, â\x80\x98new Man time.â\x80\x99 For, while the Anthropocene, as a name, claims a generalised human agency responsible for the myriad ecological crises gathered under its auspice, it is simply not the case that, as Ghosh argues, â\x80\x9cevery human being, past and present, has contributed to the present cycle of climate changeâ\x80\x9d (2016, 115).',
126
+ 'Minneapolis: University of Minnesota Press, 2007.',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ <!--
163
+ ## Bias, Risks and Limitations
164
+
165
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
166
+ -->
167
+
168
+ <!--
169
+ ### Recommendations
170
+
171
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
172
+ -->
173
+
174
+ ## Training Details
175
+
176
+ ### Training Dataset
177
+
178
+ #### Unnamed Dataset
179
+
180
+
181
+ * Size: 134,934 training samples
182
+ * Columns: <code>inp1</code>, <code>inp2</code>, and <code>score</code>
183
+ * Approximate statistics based on the first 1000 samples:
184
+ | | inp1 | inp2 | score |
185
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------|
186
+ | type | string | string | float |
187
+ | details | <ul><li>min: 8 tokens</li><li>mean: 38.09 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 32.43 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: -1.0</li><li>mean: -0.8</li><li>max: 1.0</li></ul> |
188
+ * Samples:
189
+ | inp1 | inp2 | score |
190
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
191
+ | <code>Following the lead of John Guillory in Cultural Capital: The Problem of Literary Canon Formation, I would argue that such theoretical arguments characteristically concern an “imaginary canon”—imaginary in that there is no specifically defined body of works or authors that make up such a canon.</code> | <code>“Brooks’s theory,” guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code> | <code>1.0</code> |
192
+ | <code>Cultural Capital: The Problem of Literary Canon Formation.</code> | <code>“Brooks’s theory,” guillory writes in Cultural Capital: The Problem of Liter- ary Canon Formation (Chicago: Univ.</code> | <code>1.0</code> |
193
+ | <code>A partic- ularly good example of the complex operations of critical attention and peda- gogical appropriation occurs with Zora Neale Hurston’s Their Eyes Were Watching God.</code> | <code>Similarly, in her article comparing the image patterns in Zora Neale Hurston’s Their Eyes Were Watching God and Beloved, Glenda B. Weathers also observes the dichotomous function of the trees in Beloved and argues, “They posit knowledge of both good and evil” (2005, 201) for black Americans seek- ing freedom from slavery and oppression.</code> | <code>1.0</code> |
194
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
195
+ ```json
196
+ {
197
+ "scale": 20.0,
198
+ "similarity_fct": "pairwise_cos_sim"
199
+ }
200
+ ```
201
+
202
+ ### Training Hyperparameters
203
+ #### Non-Default Hyperparameters
204
+
205
+ - `per_device_train_batch_size`: 16
206
+ - `per_device_eval_batch_size`: 16
207
+ - `num_train_epochs`: 2
208
+ - `warmup_ratio`: 0.1
209
+ - `fp16`: True
210
+
211
+ #### All Hyperparameters
212
+ <details><summary>Click to expand</summary>
213
+
214
+ - `overwrite_output_dir`: False
215
+ - `do_predict`: False
216
+ - `prediction_loss_only`: True
217
+ - `per_device_train_batch_size`: 16
218
+ - `per_device_eval_batch_size`: 16
219
+ - `per_gpu_train_batch_size`: None
220
+ - `per_gpu_eval_batch_size`: None
221
+ - `gradient_accumulation_steps`: 1
222
+ - `eval_accumulation_steps`: None
223
+ - `learning_rate`: 5e-05
224
+ - `weight_decay`: 0.0
225
+ - `adam_beta1`: 0.9
226
+ - `adam_beta2`: 0.999
227
+ - `adam_epsilon`: 1e-08
228
+ - `max_grad_norm`: 1.0
229
+ - `num_train_epochs`: 2
230
+ - `max_steps`: -1
231
+ - `lr_scheduler_type`: linear
232
+ - `lr_scheduler_kwargs`: {}
233
+ - `warmup_ratio`: 0.1
234
+ - `warmup_steps`: 0
235
+ - `log_level`: passive
236
+ - `log_level_replica`: warning
237
+ - `log_on_each_node`: True
238
+ - `logging_nan_inf_filter`: True
239
+ - `save_safetensors`: True
240
+ - `save_on_each_node`: False
241
+ - `save_only_model`: False
242
+ - `no_cuda`: False
243
+ - `use_cpu`: False
244
+ - `use_mps_device`: False
245
+ - `seed`: 42
246
+ - `data_seed`: None
247
+ - `jit_mode_eval`: False
248
+ - `use_ipex`: False
249
+ - `bf16`: False
250
+ - `fp16`: True
251
+ - `fp16_opt_level`: O1
252
+ - `half_precision_backend`: auto
253
+ - `bf16_full_eval`: False
254
+ - `fp16_full_eval`: False
255
+ - `tf32`: None
256
+ - `local_rank`: 0
257
+ - `ddp_backend`: None
258
+ - `tpu_num_cores`: None
259
+ - `tpu_metrics_debug`: False
260
+ - `debug`: []
261
+ - `dataloader_drop_last`: False
262
+ - `dataloader_num_workers`: 0
263
+ - `dataloader_prefetch_factor`: None
264
+ - `past_index`: -1
265
+ - `disable_tqdm`: False
266
+ - `remove_unused_columns`: True
267
+ - `label_names`: None
268
+ - `load_best_model_at_end`: False
269
+ - `ignore_data_skip`: False
270
+ - `fsdp`: []
271
+ - `fsdp_min_num_params`: 0
272
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
273
+ - `fsdp_transformer_layer_cls_to_wrap`: None
274
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
275
+ - `deepspeed`: None
276
+ - `label_smoothing_factor`: 0.0
277
+ - `optim`: adamw_torch
278
+ - `optim_args`: None
279
+ - `adafactor`: False
280
+ - `group_by_length`: False
281
+ - `length_column_name`: length
282
+ - `ddp_find_unused_parameters`: None
283
+ - `ddp_bucket_cap_mb`: None
284
+ - `ddp_broadcast_buffers`: False
285
+ - `dataloader_pin_memory`: True
286
+ - `dataloader_persistent_workers`: False
287
+ - `skip_memory_metrics`: True
288
+ - `use_legacy_prediction_loop`: False
289
+ - `push_to_hub`: False
290
+ - `resume_from_checkpoint`: None
291
+ - `hub_model_id`: None
292
+ - `hub_strategy`: every_save
293
+ - `hub_private_repo`: False
294
+ - `hub_always_push`: False
295
+ - `gradient_checkpointing`: False
296
+ - `gradient_checkpointing_kwargs`: None
297
+ - `include_inputs_for_metrics`: False
298
+ - `eval_do_concat_batches`: True
299
+ - `fp16_backend`: auto
300
+ - `push_to_hub_model_id`: None
301
+ - `push_to_hub_organization`: None
302
+ - `mp_parameters`:
303
+ - `auto_find_batch_size`: False
304
+ - `full_determinism`: False
305
+ - `torchdynamo`: None
306
+ - `ray_scope`: last
307
+ - `ddp_timeout`: 1800
308
+ - `torch_compile`: False
309
+ - `torch_compile_backend`: None
310
+ - `torch_compile_mode`: None
311
+ - `dispatch_batches`: None
312
+ - `split_batches`: None
313
+ - `include_tokens_per_second`: False
314
+ - `include_num_input_tokens_seen`: False
315
+ - `neftune_noise_alpha`: None
316
+ - `optim_target_modules`: None
317
+ - `batch_sampler`: batch_sampler
318
+ - `multi_dataset_batch_sampler`: proportional
319
+
320
+ </details>
321
+
322
+ ### Training Logs
323
+ <details><summary>Click to expand</summary>
324
+
325
+ | Epoch | Step | Training Loss |
326
+ |:------:|:-----:|:-------------:|
327
+ | 0.0119 | 100 | 2.2069 |
328
+ | 0.0237 | 200 | 2.3883 |
329
+ | 0.0119 | 100 | 1.8358 |
330
+ | 0.0237 | 200 | 1.974 |
331
+ | 0.0356 | 300 | 1.8488 |
332
+ | 0.0474 | 400 | 1.8799 |
333
+ | 0.0593 | 500 | 2.0132 |
334
+ | 0.0711 | 600 | 1.8831 |
335
+ | 0.0830 | 700 | 1.601 |
336
+ | 0.0948 | 800 | 2.0316 |
337
+ | 0.1067 | 900 | 1.9483 |
338
+ | 0.1185 | 1000 | 1.6585 |
339
+ | 0.1304 | 1100 | 1.7986 |
340
+ | 0.1422 | 1200 | 1.4978 |
341
+ | 0.1541 | 1300 | 1.6035 |
342
+ | 0.1660 | 1400 | 1.9908 |
343
+ | 0.1778 | 1500 | 1.2896 |
344
+ | 0.1897 | 1600 | 1.97 |
345
+ | 0.2015 | 1700 | 1.9622 |
346
+ | 0.2134 | 1800 | 1.4706 |
347
+ | 0.2252 | 1900 | 1.5162 |
348
+ | 0.2371 | 2000 | 1.6988 |
349
+ | 0.2489 | 2100 | 1.6552 |
350
+ | 0.2608 | 2200 | 1.7779 |
351
+ | 0.2726 | 2300 | 1.9001 |
352
+ | 0.2845 | 2400 | 1.7802 |
353
+ | 0.2963 | 2500 | 1.6582 |
354
+ | 0.3082 | 2600 | 1.377 |
355
+ | 0.3201 | 2700 | 1.473 |
356
+ | 0.3319 | 2800 | 1.441 |
357
+ | 0.3438 | 2900 | 1.8727 |
358
+ | 0.3556 | 3000 | 1.1545 |
359
+ | 0.3675 | 3100 | 1.7319 |
360
+ | 0.3793 | 3200 | 1.9862 |
361
+ | 0.3912 | 3300 | 1.467 |
362
+ | 0.4030 | 3400 | 2.125 |
363
+ | 0.4149 | 3500 | 2.0474 |
364
+ | 0.4267 | 3600 | 1.7078 |
365
+ | 0.4386 | 3700 | 1.7791 |
366
+ | 0.4505 | 3800 | 1.6368 |
367
+ | 0.4623 | 3900 | 1.4451 |
368
+ | 0.4742 | 4000 | 1.5612 |
369
+ | 0.4860 | 4100 | 1.3163 |
370
+ | 0.4979 | 4200 | 1.5675 |
371
+ | 0.5097 | 4300 | 1.2766 |
372
+ | 0.5216 | 4400 | 1.4506 |
373
+ | 0.5334 | 4500 | 0.9601 |
374
+ | 0.5453 | 4600 | 1.4118 |
375
+ | 0.5571 | 4700 | 1.3951 |
376
+ | 0.5690 | 4800 | 1.2048 |
377
+ | 0.5808 | 4900 | 1.1108 |
378
+ | 0.5927 | 5000 | 1.5696 |
379
+ | 0.6046 | 5100 | 1.4223 |
380
+ | 0.6164 | 5200 | 1.1789 |
381
+ | 0.6283 | 5300 | 1.1573 |
382
+ | 0.6401 | 5400 | 1.4457 |
383
+ | 0.6520 | 5500 | 1.6622 |
384
+ | 0.6638 | 5600 | 1.2699 |
385
+ | 0.6757 | 5700 | 1.0191 |
386
+ | 0.6875 | 5800 | 1.2764 |
387
+ | 0.6994 | 5900 | 0.8999 |
388
+ | 0.6046 | 5100 | 1.5085 |
389
+ | 0.6164 | 5200 | 1.3738 |
390
+ | 0.6283 | 5300 | 1.0537 |
391
+ | 0.6401 | 5400 | 1.3578 |
392
+ | 0.6520 | 5500 | 1.6301 |
393
+ | 0.6638 | 5600 | 1.091 |
394
+ | 0.6757 | 5700 | 0.9261 |
395
+ | 0.6875 | 5800 | 1.1276 |
396
+ | 0.6994 | 5900 | 0.7678 |
397
+ | 0.6047 | 5100 | 1.2021 |
398
+ | 0.6166 | 5200 | 0.8787 |
399
+ | 0.6284 | 5300 | 0.6169 |
400
+ | 0.6403 | 5400 | 0.9881 |
401
+ | 0.6521 | 5500 | 1.1844 |
402
+ | 0.6640 | 5600 | 1.032 |
403
+ | 0.6758 | 5700 | 0.8486 |
404
+ | 0.6877 | 5800 | 1.4845 |
405
+ | 0.6995 | 5900 | 1.4 |
406
+ | 0.7114 | 6000 | 0.9685 |
407
+ | 0.7233 | 6100 | 0.9288 |
408
+ | 0.7351 | 6200 | 1.4682 |
409
+ | 0.7470 | 6300 | 0.6551 |
410
+ | 0.7588 | 6400 | 0.5513 |
411
+ | 0.7707 | 6500 | 0.6092 |
412
+ | 0.7825 | 6600 | 1.3235 |
413
+ | 0.7944 | 6700 | 0.4917 |
414
+ | 0.8063 | 6800 | 0.8944 |
415
+ | 0.8181 | 6900 | 0.9298 |
416
+ | 0.8300 | 7000 | 1.1134 |
417
+ | 0.8418 | 7100 | 0.8254 |
418
+ | 0.8537 | 7200 | 1.3363 |
419
+ | 0.8655 | 7300 | 0.6571 |
420
+ | 0.8774 | 7400 | 0.8209 |
421
+ | 0.8893 | 7500 | 0.6508 |
422
+ | 0.9011 | 7600 | 1.1972 |
423
+ | 0.9130 | 7700 | 1.1095 |
424
+ | 0.9248 | 7800 | 0.8772 |
425
+ | 0.9367 | 7900 | 1.0623 |
426
+ | 0.9485 | 8000 | 0.6073 |
427
+ | 0.9604 | 8100 | 0.8292 |
428
+ | 0.9723 | 8200 | 0.6765 |
429
+ | 0.9841 | 8300 | 0.5103 |
430
+ | 0.9960 | 8400 | 1.0618 |
431
+ | 1.0078 | 8500 | 0.5134 |
432
+ | 1.0197 | 8600 | 0.5203 |
433
+ | 1.0315 | 8700 | 0.6634 |
434
+ | 1.0434 | 8800 | 0.6644 |
435
+ | 1.0553 | 8900 | 0.7459 |
436
+ | 1.0671 | 9000 | 0.5969 |
437
+ | 1.0790 | 9100 | 0.5473 |
438
+ | 1.0908 | 9200 | 0.5495 |
439
+ | 1.1027 | 9300 | 0.5093 |
440
+ | 1.1145 | 9400 | 0.7049 |
441
+ | 1.1264 | 9500 | 0.726 |
442
+ | 1.1382 | 9600 | 0.6512 |
443
+ | 1.1501 | 9700 | 0.5121 |
444
+ | 1.1620 | 9800 | 0.5977 |
445
+ | 1.1738 | 9900 | 0.4933 |
446
+ | 1.1857 | 10000 | 0.8585 |
447
+ | 1.1975 | 10100 | 0.2955 |
448
+ | 1.2094 | 10200 | 0.6972 |
449
+ | 1.2212 | 10300 | 0.454 |
450
+ | 1.2331 | 10400 | 1.1057 |
451
+ | 1.2450 | 10500 | 0.9724 |
452
+ | 1.2568 | 10600 | 0.3057 |
453
+ | 1.2687 | 10700 | 0.5967 |
454
+ | 1.2805 | 10800 | 0.7332 |
455
+ | 1.2924 | 10900 | 0.5382 |
456
+ | 1.3042 | 11000 | 0.625 |
457
+ | 1.3161 | 11100 | 0.5354 |
458
+ | 1.3280 | 11200 | 0.4289 |
459
+ | 1.3398 | 11300 | 0.4243 |
460
+ | 1.3517 | 11400 | 0.6902 |
461
+ | 1.3635 | 11500 | 0.4248 |
462
+ | 1.3754 | 11600 | 0.3743 |
463
+ | 1.3872 | 11700 | 0.5463 |
464
+ | 1.3991 | 11800 | 0.8413 |
465
+ | 1.4110 | 11900 | 0.4748 |
466
+ | 1.4228 | 12000 | 0.56 |
467
+ | 1.4347 | 12100 | 0.9269 |
468
+ | 1.4465 | 12200 | 0.4668 |
469
+ | 1.4584 | 12300 | 0.4842 |
470
+ | 1.4702 | 12400 | 0.5172 |
471
+ | 1.4821 | 12500 | 0.4498 |
472
+ | 1.4940 | 12600 | 0.4695 |
473
+ | 1.5058 | 12700 | 0.2144 |
474
+ | 1.5177 | 12800 | 0.8002 |
475
+ | 1.5295 | 12900 | 0.4022 |
476
+ | 1.5414 | 13000 | 0.4491 |
477
+ | 1.5532 | 13100 | 0.4798 |
478
+ | 1.5651 | 13200 | 0.7489 |
479
+ | 1.5770 | 13300 | 0.6108 |
480
+ | 1.5888 | 13400 | 0.3806 |
481
+ | 1.6007 | 13500 | 0.4164 |
482
+ | 1.6125 | 13600 | 0.6362 |
483
+ | 1.6244 | 13700 | 0.4773 |
484
+ | 1.6362 | 13800 | 0.4875 |
485
+ | 1.6481 | 13900 | 0.5577 |
486
+ | 1.6599 | 14000 | 0.3318 |
487
+ | 1.6718 | 14100 | 0.2959 |
488
+ | 1.6837 | 14200 | 0.3168 |
489
+ | 1.6955 | 14300 | 0.403 |
490
+ | 1.7074 | 14400 | 0.6553 |
491
+ | 1.7192 | 14500 | 0.5814 |
492
+ | 1.7311 | 14600 | 0.3407 |
493
+ | 1.7429 | 14700 | 0.3985 |
494
+ | 1.7548 | 14800 | 0.406 |
495
+ | 1.7667 | 14900 | 0.5986 |
496
+ | 1.7785 | 15000 | 0.7694 |
497
+ | 1.7904 | 15100 | 0.5025 |
498
+ | 1.8022 | 15200 | 0.7199 |
499
+ | 1.8141 | 15300 | 0.4215 |
500
+ | 1.8259 | 15400 | 0.5484 |
501
+ | 1.8378 | 15500 | 0.3551 |
502
+ | 1.8497 | 15600 | 0.3572 |
503
+ | 1.8615 | 15700 | 0.3536 |
504
+ | 1.8734 | 15800 | 0.5116 |
505
+ | 1.8852 | 15900 | 0.7094 |
506
+ | 1.8971 | 16000 | 0.4402 |
507
+ | 1.9089 | 16100 | 0.4095 |
508
+ | 1.9208 | 16200 | 0.2173 |
509
+ | 1.9327 | 16300 | 0.6058 |
510
+ | 1.9445 | 16400 | 0.7796 |
511
+ | 1.9564 | 16500 | 0.5642 |
512
+ | 1.9682 | 16600 | 0.3085 |
513
+ | 1.9801 | 16700 | 0.4308 |
514
+ | 1.9919 | 16800 | 0.3712 |
515
+
516
+ </details>
517
+
518
+ ### Framework Versions
519
+ - Python: 3.11.5
520
+ - Sentence Transformers: 3.0.1
521
+ - Transformers: 4.40.0
522
+ - PyTorch: 2.2.2
523
+ - Accelerate: 0.31.0
524
+ - Datasets: 2.19.2
525
+ - Tokenizers: 0.19.1
526
+
527
+ ## Citation
528
+
529
+ ### BibTeX
530
+
531
+ #### Sentence Transformers
532
+ ```bibtex
533
+ @inproceedings{reimers-2019-sentence-bert,
534
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
535
+ author = "Reimers, Nils and Gurevych, Iryna",
536
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
537
+ month = "11",
538
+ year = "2019",
539
+ publisher = "Association for Computational Linguistics",
540
+ url = "https://arxiv.org/abs/1908.10084",
541
+ }
542
+ ```
543
+
544
+ #### CoSENTLoss
545
+ ```bibtex
546
+ @online{kexuefm-8847,
547
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
548
+ author={Su Jianlin},
549
+ year={2022},
550
+ month={Jan},
551
+ url={https://kexue.fm/archives/8847},
552
+ }
553
+ ```
554
+
555
+ <!--
556
+ ## Glossary
557
+
558
+ *Clearly define terms in order to be accessible across audiences.*
559
+ -->
560
+
561
+ <!--
562
+ ## Model Card Authors
563
+
564
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
565
+ -->
566
+
567
+ <!--
568
+ ## Model Card Contact
569
+
570
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
571
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/GTE-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.40.0",
5
+ "pytorch": "2.2.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d8bba794500019ce8d800f830864c98860a25213cf66e4f336dee49f95b1f6a
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff