lucio's picture
Update README.md
3d92921
|
raw
history blame
4.18 kB
metadata
language: lg
datasets:
  - common_voice (train+validation+other[upvotes > downvotes])
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: Lucio XLSR Wav2Vec2 Large Luganda
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice lg
          type: common_voice
          args: lg
        metrics:
          - name: Test WER
            type: wer
            value: 48.47

Wav2Vec2-Large-XLSR-53-lg

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Luganda using the Common Voice dataset, using train, validation and other (if the example had more upvotes than downvotes), and taking the test data for validation as well as test. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") 

processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") 
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Luganda test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") 
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 48.47 %

Training

The Common Voice train, validation and other datasets were used for training, with the additional filter applied to remove other data that did not have more up votes than down votes.

The script used for training was just the run_finetuning.py script provided in OVHcloud's databuzzword/hf-wav2vec image.