|
--- |
|
language: |
|
- ug |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- mozilla-foundation/common_voice_8_0 |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: xls-r-uyghur-cv8 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xls-r-uyghur-cv8 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UG dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2430 |
|
- Wer: 0.3804 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- num_epochs: 50.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.6871 | 2.66 | 500 | 3.5374 | 1.0 | |
|
| 3.1501 | 5.32 | 1000 | 3.1278 | 1.0 | |
|
| 1.5843 | 7.97 | 1500 | 0.6358 | 0.6914 | |
|
| 1.3378 | 10.64 | 2000 | 0.4422 | 0.5925 | |
|
| 1.2595 | 13.3 | 2500 | 0.3921 | 0.5512 | |
|
| 1.1643 | 15.95 | 3000 | 0.3507 | 0.5149 | |
|
| 1.1352 | 18.61 | 3500 | 0.3351 | 0.5019 | |
|
| 1.1113 | 21.28 | 4000 | 0.3153 | 0.4845 | |
|
| 1.0914 | 23.93 | 4500 | 0.3050 | 0.4594 | |
|
| 1.0468 | 26.59 | 5000 | 0.2890 | 0.4470 | |
|
| 1.0473 | 29.25 | 5500 | 0.2755 | 0.4331 | |
|
| 1.0065 | 31.91 | 6000 | 0.2718 | 0.4264 | |
|
| 0.9794 | 34.57 | 6500 | 0.2646 | 0.4193 | |
|
| 0.9849 | 37.23 | 7000 | 0.2610 | 0.4058 | |
|
| 0.9496 | 39.89 | 7500 | 0.2522 | 0.3985 | |
|
| 0.9367 | 42.55 | 8000 | 0.2514 | 0.3947 | |
|
| 0.9295 | 45.21 | 8500 | 0.2458 | 0.3883 | |
|
| 0.9187 | 47.87 | 9000 | 0.2439 | 0.3833 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.0.dev0 |
|
- Pytorch 1.10.1+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|