File size: 3,671 Bytes
6a65d17
b3113ac
 
6a65d17
 
b3113ac
 
6a65d17
 
b88e18b
6a65d17
b88e18b
 
6a65d17
 
 
 
 
b88e18b
6a65d17
b3113ac
b88e18b
b3113ac
 
 
6a65d17
 
 
b88e18b
6a65d17
 
 
b88e18b
6a65d17
 
 
b88e18b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a65d17
 
 
 
b88e18b
6a65d17
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
language:
- uz
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: xls-r-uzbek-cv8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-uzbek-cv8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UZ dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3063
- Wer: 0.3852
- Cer: 0.0777

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 3.1401        | 3.25  | 500   | 3.1146          | 1.0    | 1.0    |
| 2.7484        | 6.49  | 1000  | 2.2842          | 1.0065 | 0.7069 |
| 1.0899        | 9.74  | 1500  | 0.5414          | 0.6125 | 0.1351 |
| 0.9465        | 12.99 | 2000  | 0.4566          | 0.5635 | 0.1223 |
| 0.8771        | 16.23 | 2500  | 0.4212          | 0.5366 | 0.1161 |
| 0.8346        | 19.48 | 3000  | 0.3994          | 0.5144 | 0.1102 |
| 0.8127        | 22.73 | 3500  | 0.3819          | 0.4944 | 0.1051 |
| 0.7833        | 25.97 | 4000  | 0.3705          | 0.4798 | 0.1011 |
| 0.7603        | 29.22 | 4500  | 0.3661          | 0.4704 | 0.0992 |
| 0.7424        | 32.47 | 5000  | 0.3529          | 0.4577 | 0.0957 |
| 0.7251        | 35.71 | 5500  | 0.3410          | 0.4473 | 0.0928 |
| 0.7106        | 38.96 | 6000  | 0.3401          | 0.4428 | 0.0919 |
| 0.7027        | 42.21 | 6500  | 0.3355          | 0.4353 | 0.0905 |
| 0.6927        | 45.45 | 7000  | 0.3308          | 0.4296 | 0.0885 |
| 0.6828        | 48.7  | 7500  | 0.3246          | 0.4204 | 0.0863 |
| 0.6706        | 51.95 | 8000  | 0.3250          | 0.4233 | 0.0868 |
| 0.6629        | 55.19 | 8500  | 0.3264          | 0.4159 | 0.0849 |
| 0.6556        | 58.44 | 9000  | 0.3213          | 0.4100 | 0.0835 |
| 0.6484        | 61.69 | 9500  | 0.3182          | 0.4124 | 0.0837 |
| 0.6407        | 64.93 | 10000 | 0.3171          | 0.4050 | 0.0825 |
| 0.6375        | 68.18 | 10500 | 0.3150          | 0.4039 | 0.0822 |
| 0.6363        | 71.43 | 11000 | 0.3129          | 0.3991 | 0.0810 |
| 0.6307        | 74.67 | 11500 | 0.3114          | 0.3986 | 0.0807 |
| 0.6232        | 77.92 | 12000 | 0.3103          | 0.3895 | 0.0790 |
| 0.6216        | 81.17 | 12500 | 0.3086          | 0.3891 | 0.0790 |
| 0.6174        | 84.41 | 13000 | 0.3082          | 0.3881 | 0.0785 |
| 0.6196        | 87.66 | 13500 | 0.3059          | 0.3875 | 0.0782 |
| 0.6174        | 90.91 | 14000 | 0.3084          | 0.3862 | 0.0780 |
| 0.6169        | 94.16 | 14500 | 0.3070          | 0.3860 | 0.0779 |
| 0.6166        | 97.4  | 15000 | 0.3066          | 0.3855 | 0.0778 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0