lucyknada's picture
Update README.md
66419c2 verified
metadata
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: Rubra-Qwen2-7B-Instruct
    results:
      - task:
          type: text-generation
        dataset:
          type: MMLU
          name: MMLU
        metrics:
          - type: 5-shot
            value: 68.88
            verified: false
      - task:
          type: text-generation
        dataset:
          type: GPQA
          name: GPQA
        metrics:
          - type: 0-shot
            value: 30.36
            verified: false
      - task:
          type: text-generation
        dataset:
          type: GSM-8K
          name: GSM-8K
        metrics:
          - type: 8-shot, CoT
            value: 75.82
            verified: false
      - task:
          type: text-generation
        dataset:
          type: MATH
          name: MATH
        metrics:
          - type: 4-shot, CoT
            value: 28.72
            verified: false
      - task:
          type: text-generation
        dataset:
          type: MT-bench
          name: MT-bench
        metrics:
          - type: GPT-4 as Judge
            value: 8.08
            verified: false
tags:
  - function-calling
  - tool-calling
  - agentic
  - rubra
  - conversational
language:
  - en
  - zh

exl2 quant (measurement.json included)


original readme below



Qwen2 7B Instruct

Model description

The model is the result of further post-training Qwen/Qwen2-7B-Instruct. It is capable of complex multi-turn tool/function calling.

Training

The model was post-trained (freeze tuned & DPO) on a proprietary dataset consisting of diverse function calling, chat, and instruct data.

How to use

You can use the model with the Hugging Face transformers and the rubra library rubra-tools as follows:

pip install rubra_tools torch==2.3.0 transformers accelerate

You also need Node.js and npm installed. Once you do, install the jsonrepair package - it's used to fix some rare hallucinations by the model.

npm install jsonrepair

1. Load the Model

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from rubra_tools import preprocess_input, postprocess_output

model_id = "rubra-ai/Qwen2-7B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto",
)

2. Define Functions

Here we use 4 functions for a simple math chaining question:

functions = [
    {
            'type': 'function',
            'function': {
                'name': 'addition',
                'description': "Adds two numbers together",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to add',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to add',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'subtraction',
                'description': "Subtracts two numbers",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to be subtracted from',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Number to subtract',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'multiplication',
                'description': "Multiply two numbers together",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to multiply',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to multiply',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
        {
            'type': 'function',
            'function': {
                'name': 'division',
                'description': "Divide two numbers",
                'parameters': {
                    'type': 'object',
                    'properties': {
                        'a': {
                            'description': 'First number to use as the dividend',
                            'type': 'string'
                        },
                        'b': {
                            'description': 'Second number to use as the divisor',
                            'type': 'string'
                        }
                    },
                    'required': []
                }
            }
        },
]

3. Start the conversation

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "What is the result of four plus six? Take the result and add 2? Then multiply by 5 and then divide by two"},
]

def run_model(messages, functions):
    ## Format messages in Rubra's format
    formatted_msgs = preprocess_input(msgs=messages, tools=functions)

    text = tokenizer.apply_chat_template(
        formatted_msgs,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    return response


raw_output = run_model(messages, functions)
# Check if there's a function call
function_call = postprocess_output(raw_output)
if function_call:
    print(function_call)
else:
    print(raw_output)

You should see this output, which is a function call made by the AI assistant:

[{'id': 'fc65a533', 'function': {'name': 'addition', 'arguments': '{"a": "4", "b": "6"}'}, 'type': 'function'}]

4. Add Executed Tool Result to Message History & Continue the Conversation

if function_call:
    # append the assistant tool call msg
    messages.append({"role": "assistant", "tool_calls": function_call})
    # append the result of the tool call in openai format, in this case, the value of add 6 to 4 is 10.
    messages.append({'role': 'tool', 'tool_call_id': function_call[0]["id"], 'name': function_call[0]["function"]["name"], 'content': '10'})
    raw_output1 = run_model(messages, functions)
    # Check if there's a function call

    function_call = postprocess_output(raw_output1)
    if function_call:
        print(function_call)
    else:
        print(raw_output)

The LLM will make another call

[{'id': '2ffc3de4', 'function': {'name': 'addition', 'arguments': '{"a": "10", "b": "2"}'}, 'type': 'function'}]

Framework Versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1

Limitations and Bias

While the model performs well on a wide range of tasks, it may still produce biased or incorrect outputs. Users should exercise caution and critical judgment when using the model in sensitive or high-stakes applications. The model's outputs are influenced by the data it was trained on, which may contain inherent biases.

Ethical Considerations

Users should ensure that the deployment of this model adheres to ethical guidelines and consider the potential societal impact of the generated text. Misuse of the model for generating harmful or misleading content is strongly discouraged.

Acknowledgements

We would like to thank Alibaba Cloud for the model.

Contact Information

For questions or comments about the model, please reach out to the rubra team.

Citation

If you use this work, please cite it as:

@misc {rubra_ai_2024,
    author       = { Sanjay Nadhavajhala and Yingbei Tong },
    title        = { Rubra-Qwen2-7B-Instruct },
    year         = 2024,
    url          = { https://huggingface.co/rubra-ai/Qwen2-7B-Instruct },
    doi          = { 10.57967/hf/2683 },
    publisher    = { Hugging Face }
}