model documentation

#1
by nazneen - opened
Files changed (1) hide show
  1. README.md +198 -3
README.md CHANGED
@@ -1,12 +1,114 @@
1
  ---
 
2
  language:
3
  - zh
4
- license: "apache-2.0"
5
  ---
6
 
7
- ## Chinese MRC roberta_wwm_ext_large
8
 
9
- * 使用大量中文MRC数据训练的roberta_wwm_ext_large模型,详情可查看:https://github.com/basketballandlearn/MRC_Competition_Dureader
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  * 此库发布的再训练模型,在 阅读理解/分类 等任务上均有大幅提高<br/>
11
  (已有多位小伙伴在Dureader-2021等多个比赛中取得**top5**的成绩😁)
12
 
@@ -19,4 +121,97 @@ license: "apache-2.0"
19
  | macbert-large (ours) | 70.45 / **68.13**| **83.4** |
20
  | roberta-wwm-ext-large (ours) | 68.91 / 66.91 | 83.1 |
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
  language:
4
  - zh
 
5
  ---
6
 
 
7
 
8
+
9
+ # Model Card for Chinese MRC roberta_wwm_ext_large
10
+
11
+ # Model Details
12
+
13
+ ## Model Description
14
+
15
+ 使用大量中文MRC数据训练的roberta_wwm_ext_large模型,[详情可查看](https://github.com/basketballandlearn/MRC_Competition_Dureader)
16
+
17
+ - **Developed by:** luhua-rain
18
+ - **Shared by [Optional]:** luhua-rain
19
+ - **Model type:** Question Answering
20
+ - **Language(s) (NLP):** Chinese
21
+ - **License:** Apache 2.0
22
+ - **Parent Model:** BERT
23
+ - **Resources for more information:**
24
+ - [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
25
+
26
+
27
+
28
+ # Uses
29
+
30
+
31
+ ## Direct Use
32
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
33
+ > 此mrc模型可直接用于open domain,点击体验
34
+
35
+ ## Downstream Use [Optional]
36
+
37
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
38
+ > 将此模型放到下游 MRC/分类 任务微调可比直接使用预训练语言模型提高2个点/1个点以上
39
+
40
+ ## Out-of-Scope Use
41
+
42
+ The model should not be used to intentionally create hostile or alienating environments for people.
43
+
44
+ # Bias, Risks, and Limitations
45
+
46
+
47
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
48
+
49
+
50
+
51
+ ## Recommendations
52
+
53
+
54
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
55
+
56
+
57
+ # Training Details
58
+
59
+ ## Training Data
60
+
61
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
62
+ > 网上收集的大量中文MRC数据 (其中包括公开的MRC数据集以及自己爬取的网页数据等, 囊括了医疗、教育、娱乐、百科、军事、法律、等领域。)
63
+
64
+ ## Training Procedure
65
+
66
+
67
+ ### Preprocessing
68
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader):
69
+ >**清洗**
70
+ 舍弃:context>1024的舍弃、question>64的舍弃、网页标签占比超过30%的舍弃。
71
+ 重新标注:若answer>64且不完全出现在文档中,则采用模糊匹配: 计算所有片段与answer的相似度(F1值),取相似度最高的且高于阈值(0.8)
72
+ **数据标注**
73
+ 收集的数据有一部分是不包含的位置标签的,仅仅是(问题-文章-答案)的三元组形式。 所以,对于只有答案而没有位置标签的数据通过正则匹配进行位置标注:
74
+ 若答案片段多次出现在文章中,选择上下文与问题最相似的答案片段作为标准答案(使用F1值计算相似度,答案片段的上文48和下文48个字符作为上下文);
75
+ 若答案片段只出现一次,则默认该答案为标准答案。
76
+ 采用滑动窗口将长文档切分为多个重叠的子文档,故一个文档可能会生成多个有答案的子文档。
77
+ **无答案数据构造**
78
+ 在跨领域数据上训练可以增加数据的领域多样性,进而提高模型的泛化能力,而负样本的引入恰好能使得模型编码尽可能多的数据,加强模型对难样本的识别能力:
79
+ 1.) 对于每一个问题,随机从数据中捞取context,并保留对应的title作为负样本;(50%)
80
+ 2.) 对于每一个问题,将其正样本中答案出现的句子删除,以此作为负样本;(20%)
81
+ 3.) 对于每一个问题,使用BM25算法召回得分最高的前十个文档,然后根据得分采样出一个context作为负样本, 对于非实体类答案,剔除得分最高的context(30%)
82
+
83
+
84
+
85
+
86
+
87
+
88
+ ### Speeds, Sizes, Times
89
+ More information needed
90
+
91
+
92
+ # Evaluation
93
+
94
+
95
+ ## Testing Data, Factors & Metrics
96
+
97
+ ### Testing Data
98
+
99
+ More information needed
100
+
101
+
102
+ ### Factors
103
+ More information needed
104
+
105
+ ### Metrics
106
+
107
+ More information needed
108
+
109
+
110
+ ## Results
111
+
112
  * 此库发布的再训练模型,在 阅读理解/分类 等任务上均有大幅提高<br/>
113
  (已有多位小伙伴在Dureader-2021等多个比赛中取得**top5**的成绩😁)
114
 
 
121
  | macbert-large (ours) | 70.45 / **68.13**| **83.4** |
122
  | roberta-wwm-ext-large (ours) | 68.91 / 66.91 | 83.1 |
123
 
124
+ | 68.91 / 66.91 | 83.1 |
125
+
126
+
127
+
128
+
129
+
130
+ # Model Examination
131
+
132
+ More information needed
133
+
134
+ # Environmental Impact
135
+
136
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
137
+
138
+ - **Hardware Type:** More information needed
139
+ - **Hours used:** More information needed
140
+ - **Cloud Provider:** More information needed
141
+ - **Compute Region:** More information needed
142
+ - **Carbon Emitted:** More information needed
143
+
144
+ # Technical Specifications [optional]
145
+
146
+ ## Model Architecture and Objective
147
+
148
+ More information needed
149
+
150
+ ## Compute Infrastructure
151
+
152
+ More information needed
153
+
154
+ ### Hardware
155
+
156
+
157
+ More information needed
158
+
159
+ ### Software
160
+
161
+ More information needed.
162
+
163
+ # Citation
164
+
165
+
166
+ **BibTeX:**
167
+
168
+
169
+ More information needed
170
+
171
+
172
+
173
+
174
+ # Glossary [optional]
175
+ More information needed
176
+
177
+ # More Information [optional]
178
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
179
+ > 代码上传前已经跑通。文件不多,所以如果碰到报错之类的信息,可能是代码路径不对、缺少安装包等问题,一步步解决,可以提issue
180
+ 环境
181
+
182
+
183
+
184
+ # Model Card Authors [optional]
185
+
186
+ Luhua-rain in collaboration with Ezi Ozoani and the Hugging Face team
187
+
188
+
189
+ # Model Card Contact
190
+
191
+ The model authors also note in the [GitHub Repo](https://github.com/basketballandlearn/MRC_Competition_Dureader)
192
+ > 合作
193
+ 相关训练数据以及使用更多数据训练的模型/一起打比赛 可邮箱联系(luhua98@foxmail.com)~
194
+
195
+
196
+ # How to Get Started with the Model
197
+
198
+ Use the code below to get started with the model.
199
+
200
+ <details>
201
+ <summary> Click to expand </summary>
202
+
203
+ ```python
204
+ ----- 使用方法 -----
205
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering
206
+
207
+ model_name = "chinese_pretrain_mrc_roberta_wwm_ext_large" # "chinese_pretrain_mrc_macbert_large"
208
+
209
+ # Use in Transformers
210
+ tokenizer = AutoTokenizer.from_pretrained(f"luhua/{model_name}")
211
+ model = AutoModelForQuestionAnswering.from_pretrained(f"luhua/{model_name}")
212
 
213
+ # Use locally(通过 https://huggingface.co/luhua 下载模型及配置文件)
214
+ tokenizer = BertTokenizer.from_pretrained(f'./{model_name}')
215
+ model = AutoModelForQuestionAnswering.from_pretrained(f'./{model_name}')
216
+ ```
217
+ </details>