asr_luigi_test / README.md
luigimontaleone's picture
End of training
13fad4a verified
|
raw
history blame
2.18 kB
metadata
base_model: openai/whisper-large-v3
datasets:
  - b-brave/speech_disorders_voice
language:
  - it
library_name: peft
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Medium
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: b-brave/speech_disorders_voice
          type: b-brave/speech_disorders_voice
          config: default
          split: train
          args: default
        metrics:
          - type: wer
            value: 100
            name: Wer

Whisper Medium

This model is a fine-tuned version of openai/whisper-large-v3 on the b-brave/speech_disorders_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1865
  • Wer: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 48
  • training_steps: 256
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.423 0.375 48 0.3535 106.0166
0.3121 0.75 96 0.2261 100.0
0.2534 1.125 144 0.1995 100.0
0.147 1.5 192 0.1973 99.7925
0.1161 1.875 240 0.1865 100.0

Framework versions

  • PEFT 0.11.2.dev0
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1