whisper-small-it / README.md
luigisaetta's picture
Update README.md
e4f117d
metadata
language:
  - it
license: apache-2.0
tags:
  - generated_from_trainer
  - whisper-event
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: whisper-small-it
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 it
          type: mozilla-foundation/common_voice_11_0
          config: it
          split: test
          args: it
        metrics:
          - name: Wer
            type: wer
            value: 11.72

whisper-small-it

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1919
  • Wer: 11.72

Model description

More information needed

Intended uses & limitations

I have left this model here. BUt the "small3-it", produced later, has better performance.

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1441 1.68 1000 0.1912 0.1256
0.0653 3.36 2000 0.1845 0.1182
0.0374 5.03 3000 0.1919 0.1172
0.0238 6.71 4000 0.2069 0.1202
0.0162 8.39 5000 0.2184 0.1223

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2