|
--- |
|
language: |
|
- en |
|
license: llama3.2 |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- llama |
|
- trl |
|
- sft |
|
- reasoning |
|
- llama-3 |
|
base_model: lunahr/Hermes-3-Llama-3.2-3B-abliterated |
|
datasets: |
|
- KingNish/reasoning-base-20k |
|
- lunahr/thea-name-overrides |
|
--- |
|
|
|
# Model Description |
|
|
|
An uncensored reasoning Llama 3.2 3B model trained on reasoning data. |
|
|
|
This is the 2nd revision of Thea, based on a better base model, and with twice the reasoning data. |
|
|
|
It has been trained using improved training code, and gives an improved performance. |
|
Here is what inference code you should use: |
|
```py |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
MAX_REASONING_TOKENS = 1024 |
|
MAX_RESPONSE_TOKENS = 512 |
|
|
|
model_name = "lunahr/thea-v2-3b-50r" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Which is greater 9.9 or 9.11 ??" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
# Generate reasoning |
|
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) |
|
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) |
|
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) |
|
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
print("REASONING: " + reasoning_output) |
|
|
|
# Generate answer |
|
messages.append({"role": "reasoning", "content": reasoning_output}) |
|
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) |
|
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) |
|
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
|
|
print("ANSWER: " + response_output) |
|
``` |
|
|
|
- **Trained by:** [Piotr Zalewski](https://huggingface.co/lunahr) |
|
- **License:** llama3.2 |
|
- **Finetuned from model:** [lunahr/Hermes-3-Llama-3.2-3B-abliterated](https://huggingface.co/lunahr/Hermes-3-Llama-3.2-3B-abliterated)* |
|
- **Dataset used:** [KingNish/reasoning-base-20k](https://huggingface.co/datasets/KingNish/reasoning-base-20k) |
|
|
|
This Llama model was trained faster than [Unsloth](https://github.com/unslothai/unsloth) using [custom training code](https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4). |
|
|
|
Visit https://www.kaggle.com/code/piotr25691/distributed-llama-training-with-2xt4 to find out how you can finetune your models using BOTH of the Kaggle provided GPUs. |
|
|
|
*Created from https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B using a custom abliterator. |