mt5-summarize / README.md
lunarlist's picture
End of training
939a41b verified
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: mt5-summarize
    results: []

mt5-summarize

This model is a fine-tuned version of google/mt5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1534
  • Rouge1: 0.3153
  • Rouge2: 0.1594
  • Rougel: 0.2511
  • Rougelsum: 0.3397

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 90
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.3806 1.0667 100 3.4709 0.2568 0.1258 0.2214 0.2662
3.7757 2.1333 200 3.2899 0.2759 0.1388 0.2381 0.2946
3.5195 3.2 300 3.1951 0.2951 0.1523 0.2466 0.3217
3.4319 4.2667 400 3.1715 0.2813 0.1323 0.2331 0.3011
3.2402 5.3333 500 3.1704 0.3058 0.1548 0.2513 0.3366
3.2313 6.4 600 3.1657 0.3077 0.1534 0.2461 0.3335
3.1444 7.4667 700 3.1719 0.2957 0.1453 0.2378 0.3191
3.116 8.5333 800 3.1639 0.3144 0.1540 0.2501 0.3453
2.9937 9.6 900 3.1534 0.3153 0.1594 0.2511 0.3397

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1