Edit model card

feel_it_finetuned_pro_emit_correlations

This model is a fine-tuned version of MilaNLProc/feel-it-italian-emotion on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3170
  • F1: 0.4564
  • Roc Auc: 0.6868
  • Accuracy: 0.3162

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.309 1.0 1037 0.2952 0.1169 0.5394 0.2079
0.2586 2.0 2074 0.2731 0.2947 0.6109 0.2766
0.2142 3.0 3111 0.2721 0.4023 0.6552 0.3024
0.1829 4.0 4148 0.2731 0.4274 0.6637 0.3076
0.1564 5.0 5185 0.2862 0.4288 0.6700 0.3110
0.1341 6.0 6222 0.3004 0.4502 0.6826 0.3024
0.1187 7.0 7259 0.3126 0.4548 0.6892 0.3230
0.1024 8.0 8296 0.3170 0.4564 0.6868 0.3162
0.0939 9.0 9333 0.3280 0.4516 0.6874 0.3110
0.0864 10.0 10370 0.3316 0.4501 0.6873 0.3076

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lupobricco/feel_it_finetuned_base_model

Finetuned
(11)
this model