metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-cased
model-index:
- name: bert-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: train
args: conll2003
metrics:
- type: precision
value: 0.8091397849462365
name: Precision
- type: recall
value: 0.869942196531792
name: Recall
- type: f1
value: 0.8384401114206128
name: F1
- type: accuracy
value: 0.9525716045580536
name: Accuracy
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1689
- Precision: 0.8091
- Recall: 0.8699
- F1: 0.8384
- Accuracy: 0.9526
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.1917 | 0.7899 | 0.8584 | 0.8227 | 0.9430 |
No log | 2.0 | 200 | 0.1689 | 0.8091 | 0.8699 | 0.8384 | 0.9526 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2