lyliiiii's picture
yyw/phi2-lora-text-classification
03b5e99
metadata
license: other
library_name: peft
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - accuracy
base_model: microsoft/phi-2
model-index:
  - name: Phi2-Seq-classification-LoRa
    results: []

Phi2-Seq-classification-LoRa

This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5015
  • Precision: 0.9783
  • Recall: 0.8182
  • F1-score: 0.8911
  • Accuracy: 0.9236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1-score Accuracy
0.3914 0.7 100 0.5650 0.8571 0.6545 0.7423 0.8264
0.0065 1.39 200 0.8945 0.9375 0.8182 0.8738 0.9097
0.2111 2.09 300 0.6418 0.9388 0.8364 0.8846 0.9167
0.1823 2.78 400 0.5655 0.9773 0.7818 0.8687 0.9097
0.145 3.48 500 0.9232 0.9545 0.7636 0.8485 0.8958
0.1095 4.17 600 0.8011 0.9583 0.8364 0.8932 0.9236
0.0 4.87 700 0.9774 0.9796 0.8727 0.9231 0.9444
0.4204 5.57 800 0.6787 0.96 0.8727 0.9143 0.9375
0.0068 6.26 900 1.1916 0.9783 0.8182 0.8911 0.9236
0.0004 6.96 1000 0.9468 0.9783 0.8182 0.8911 0.9236
0.0 7.65 1100 1.2818 0.9787 0.8364 0.9020 0.9306
0.0 8.35 1200 1.2332 0.9787 0.8364 0.9020 0.9306
0.0 9.04 1300 1.3078 0.9583 0.8364 0.8932 0.9236
0.0 9.74 1400 1.9713 0.9773 0.7818 0.8687 0.9097
0.0001 10.43 1500 1.5254 0.9773 0.7818 0.8687 0.9097
0.0 11.13 1600 1.8045 0.9592 0.8545 0.9038 0.9306
0.0011 11.83 1700 2.7594 0.9574 0.8182 0.8824 0.9167
0.0 12.52 1800 1.9378 0.9592 0.8545 0.9038 0.9306
0.0 13.22 1900 1.8710 0.9592 0.8545 0.9038 0.9306
0.0 13.91 2000 1.8685 0.9592 0.8545 0.9038 0.9306
0.0 14.61 2100 1.8683 0.9592 0.8545 0.9038 0.9306
0.0384 15.3 2200 2.3028 0.9592 0.8545 0.9038 0.9306
0.001 16.0 2300 1.7787 0.9216 0.8545 0.8868 0.9167
0.0 16.7 2400 1.8615 0.9787 0.8364 0.9020 0.9306
0.8746 17.39 2500 2.6710 0.9756 0.7273 0.8333 0.8889
0.0 18.09 2600 1.0475 0.9412 0.8727 0.9057 0.9306
0.0 18.78 2700 2.3325 0.9778 0.8 0.8800 0.9167
0.0001 19.48 2800 1.3658 0.94 0.8545 0.8952 0.9236
0.0 20.17 2900 2.4668 0.9783 0.8182 0.8911 0.9236
0.0 20.87 3000 2.5015 0.9783 0.8182 0.8911 0.9236

Framework versions

  • PEFT 0.7.1
  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0