File size: 83,257 Bytes
2a4f061
 
 
 
 
092410b
 
 
 
 
2a4f061
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
092410b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
 
2a4f061
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092410b
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709655d
2a4f061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
709655d
2a4f061
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
import logging
import os
import random
import math
import re
import shutil
import warnings
import datetime
import time
from collections import defaultdict, deque
from typing import List, Optional, Tuple, Union

from torch.cuda.amp import autocast as autocast
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers import Wav2Vec2FeatureExtractor
from omegaconf import OmegaConf

from .configuration_musilingo import MusiLingoConfig, PATH
import timm.models.hub as timm_hub


from transformers import LlamaTokenizer, Wav2Vec2FeatureExtractor, AutoModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers import PreTrainedModel



def download_url(
    url: str, root: str, filename: Optional[str] = None, md5: Optional[str] = None, max_redirect_hops: int = 3
) -> None:
    """Download a file from a url and place it in root.

    Args:
        url (str): URL to download file from
        root (str): Directory to place downloaded file in
        filename (str, optional): Name to save the file under. If None, use the basename of the URL
        md5 (str, optional): MD5 checksum of the download. If None, do not check
        max_redirect_hops (int, optional): Maximum number of redirect hops allowed
    """
    root = os.path.expanduser(root)
    if not filename:
        filename = os.path.basename(url)
    fpath = os.path.join(root, filename)

    os.makedirs(root, exist_ok=True)

    # check if file is already present locally
    if check_integrity(fpath, md5):
        print("Using downloaded and verified file: " + fpath)
        return

    if _is_remote_location_available():
        _download_file_from_remote_location(fpath, url)
    else:
        # expand redirect chain if needed
        url = _get_redirect_url(url, max_hops=max_redirect_hops)

        # check if file is located on Google Drive
        file_id = _get_google_drive_file_id(url)
        if file_id is not None:
            return download_file_from_google_drive(file_id, root, filename, md5)

        # download the file
        try:
            print("Downloading " + url + " to " + fpath)
            _urlretrieve(url, fpath)
        except (urllib.error.URLError, OSError) as e:  # type: ignore[attr-defined]
            if url[:5] == "https":
                url = url.replace("https:", "http:")
                print("Failed download. Trying https -> http instead. Downloading " + url + " to " + fpath)
                _urlretrieve(url, fpath)
            else:
                raise e

    # check integrity of downloaded file
    if not check_integrity(fpath, md5):
        raise RuntimeError("File not found or corrupted.")



def load_dataset_config(cfg_path):
    cfg = OmegaConf.load(cfg_path).datasets
    cfg = cfg[list(cfg.keys())[0]]

    return cfg

class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value,
        )


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)
        self.delimiter = delimiter

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError(
            "'{}' object has no attribute '{}'".format(type(self).__name__, attr)
        )

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append("{}: {}".format(name, str(meter)))
        return self.delimiter.join(loss_str)

    def global_avg(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append("{}: {:.4f}".format(name, meter.global_avg))
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):
        i = 0
        if not header:
            header = ""
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt="{avg:.4f}")
        data_time = SmoothedValue(fmt="{avg:.4f}")
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
        log_msg = [
            header,
            "[{0" + space_fmt + "}/{1}]",
            "eta: {eta}",
            "{meters}",
            "time: {time}",
            "data: {data}",
        ]
        if torch.cuda.is_available():
            log_msg.append("max mem: {memory:.0f}")
        log_msg = self.delimiter.join(log_msg)
        MB = 1024.0 * 1024.0
        for obj in iterable:
            data_time.update(time.time() - end)
            yield obj
            iter_time.update(time.time() - end)
            if i % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                if torch.cuda.is_available():
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                            memory=torch.cuda.max_memory_allocated() / MB,
                        )
                    )
                else:
                    print(
                        log_msg.format(
                            i,
                            len(iterable),
                            eta=eta_string,
                            meters=str(self),
                            time=str(iter_time),
                            data=str(data_time),
                        )
                    )
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print(
            "{} Total time: {} ({:.4f} s / it)".format(
                header, total_time_str, total_time / len(iterable)
            )
        )


def move_to_cuda(sample):
    def _move_to_cuda(tensor):
        return tensor.cuda()

    return apply_to_sample(_move_to_cuda, sample)

def apply_to_sample(f, sample):
    if len(sample) == 0:
        return {}

    def _apply(x):
        if torch.is_tensor(x):
            return f(x)
        elif isinstance(x, dict):
            return {key: _apply(value) for key, value in x.items()}
        elif isinstance(x, list):
            return [_apply(x) for x in x]
        else:
            return x

    return _apply(sample)

def prepare_sample(samples, cuda_enabled=True):
    if cuda_enabled:
        samples = move_to_cuda(samples)

    # TODO fp16 support

    return samples

def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()

class BaseTask:
    def __init__(self, **kwargs):
        super().__init__()

        self.inst_id_key = "instance_id"

    @classmethod
    def setup_task(cls, **kwargs):
        return cls()

    def build_model(self, cfg):
        model_config = cfg.model_cfg

        model_cls = registry.get_model_class(model_config.arch)
        return model_cls.from_config(model_config)

    def build_datasets(self, cfg):
        """
        Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'.
        Download dataset and annotations automatically if not exist.

        Args:
            cfg (common.config.Config): _description_

        Returns:
            dict: Dictionary of torch.utils.data.Dataset objects by split.
        """

        datasets = dict()

        datasets_config = cfg.datasets_cfg

        assert len(datasets_config) > 0, "At least one dataset has to be specified."

        for name in datasets_config:
            dataset_config = datasets_config[name]

            builder = registry.get_builder_class(name)(dataset_config)
            dataset = builder.build_datasets()

            dataset['train'].name = name
            if 'sample_ratio' in dataset_config:
                dataset['train'].sample_ratio = dataset_config.sample_ratio

            datasets[name] = dataset

        return datasets

    def train_step(self, model, samples):
        loss = model(samples)["loss"]
        return loss

    def valid_step(self, model, samples):
        raise NotImplementedError

    def before_evaluation(self, model, dataset, **kwargs):
        model.before_evaluation(dataset=dataset, task_type=type(self))

    def after_evaluation(self, **kwargs):
        pass

    def inference_step(self):
        raise NotImplementedError

    def evaluation(self, model, data_loader, cuda_enabled=True):
        metric_logger = MetricLogger(delimiter="  ")
        header = "Evaluation"
        # TODO make it configurable
        print_freq = 10

        results = []

        for samples in metric_logger.log_every(data_loader, print_freq, header):
            samples = prepare_sample(samples, cuda_enabled=cuda_enabled)

            eval_output = self.valid_step(model=model, samples=samples)
            results.extend(eval_output)

        if is_dist_avail_and_initialized():
            dist.barrier()

        return results

    def train_epoch(
        self,
        epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        cuda_enabled=False,
        log_freq=50,
        accum_grad_iters=1,
    ):
        return self._train_inner_loop(
            epoch=epoch,
            iters_per_epoch=lr_scheduler.iters_per_epoch,
            model=model,
            data_loader=data_loader,
            optimizer=optimizer,
            scaler=scaler,
            lr_scheduler=lr_scheduler,
            log_freq=log_freq,
            cuda_enabled=cuda_enabled,
            accum_grad_iters=accum_grad_iters,
        )

    def train_iters(
        self,
        epoch,
        start_iters,
        iters_per_inner_epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        cuda_enabled=False,
        log_freq=50,
        accum_grad_iters=1,
    ):
        return self._train_inner_loop(
            epoch=epoch,
            start_iters=start_iters,
            iters_per_epoch=iters_per_inner_epoch,
            model=model,
            data_loader=data_loader,
            optimizer=optimizer,
            scaler=scaler,
            lr_scheduler=lr_scheduler,
            log_freq=log_freq,
            cuda_enabled=cuda_enabled,
            accum_grad_iters=accum_grad_iters,
        )

    def _train_inner_loop(
        self,
        epoch,
        iters_per_epoch,
        model,
        data_loader,
        optimizer,
        lr_scheduler,
        scaler=None,
        start_iters=None,
        log_freq=50,
        cuda_enabled=False,
        accum_grad_iters=1,
    ):
        """
        An inner training loop compatible with both epoch-based and iter-based training.

        When using epoch-based, training stops after one epoch; when using iter-based,
        training stops after #iters_per_epoch iterations.
        """
        use_amp = scaler is not None

        if not hasattr(data_loader, "__next__"):
            # convert to iterator if not already
            data_loader = iter(data_loader)

        metric_logger = MetricLogger(delimiter="  ")
        metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}"))
        metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}"))

        # if iter-based runner, schedule lr based on inner epoch.
        logging.info(
            "Start training epoch {}, {} iters per inner epoch.".format(
                epoch, iters_per_epoch
            )
        )
        header = "Train: data epoch: [{}]".format(epoch)
        if start_iters is None:
            # epoch-based runner
            inner_epoch = epoch
        else:
            # In iter-based runner, we schedule the learning rate based on iterations.
            inner_epoch = start_iters // iters_per_epoch
            header = header + "; inner epoch [{}]".format(inner_epoch)

        for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header):
            # if using iter-based runner, we stop after iters_per_epoch iterations.
            if i >= iters_per_epoch:
                break

            samples = next(data_loader)

            samples = prepare_sample(samples, cuda_enabled=cuda_enabled)
            samples.update(
                {
                    "epoch": inner_epoch,
                    "num_iters_per_epoch": iters_per_epoch,
                    "iters": i,
                }
            )

            lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i)

            with torch.cuda.amp.autocast(enabled=use_amp):
                loss = self.train_step(model=model, samples=samples)

            # after_train_step()
            if use_amp:
                scaler.scale(loss).backward()
            else:
                loss.backward()

            # update gradients every accum_grad_iters iterations
            if (i + 1) % accum_grad_iters == 0:
                if use_amp:
                    scaler.step(optimizer)
                    scaler.update()                     
                else:    
                    optimizer.step()
                optimizer.zero_grad()

            metric_logger.update(loss=loss.item())
            metric_logger.update(lr=optimizer.param_groups[0]["lr"])

        # after train_epoch()
        # gather the stats from all processes
        metric_logger.synchronize_between_processes()
        logging.info("Averaged stats: " + str(metric_logger.global_avg()))
        return {
            k: "{:.3f}".format(meter.global_avg)
            for k, meter in metric_logger.meters.items()
        }

    @staticmethod
    def save_result(result, result_dir, filename, remove_duplicate=""):
        import json

        result_file = os.path.join(
            result_dir, "%s_rank%d.json" % (filename, get_rank())
        )
        final_result_file = os.path.join(result_dir, "%s.json" % filename)

        json.dump(result, open(result_file, "w"))

        if is_dist_avail_and_initialized():
            dist.barrier()

        if is_main_process():
            logging.warning("rank %d starts merging results." % get_rank())
            # combine results from all processes
            result = []

            for rank in range(get_world_size()):
                result_file = os.path.join(
                    result_dir, "%s_rank%d.json" % (filename, rank)
                )
                res = json.load(open(result_file, "r"))
                result += res

            if remove_duplicate:
                result_new = []
                id_list = []
                for res in result:
                    if res[remove_duplicate] not in id_list:
                        id_list.append(res[remove_duplicate])
                        result_new.append(res)
                result = result_new

            json.dump(result, open(final_result_file, "w"))
            print("result file saved to %s" % final_result_file)

        return final_result_file


class BaseProcessor:
    def __init__(self):
        self.transform = lambda x: x
        return

    def __call__(self, item):
        return self.transform(item)

    @classmethod
    def from_config(cls, cfg=None):
        return cls()

    def build(self, **kwargs):
        cfg = OmegaConf.create(kwargs)

        return self.from_config(cfg)

def get_cache_path(rel_path):
    return os.path.expanduser(os.path.join(registry.get_path("cache_root"), rel_path))


class BaseDatasetBuilder:
    train_dataset_cls, eval_dataset_cls = None, None

    def __init__(self, cfg=None):
        super().__init__()

        if cfg is None:
            # help to create datasets from default config.
            self.config = load_dataset_config(self.default_config_path())
        elif isinstance(cfg, str):
            self.config = load_dataset_config(cfg)
        else:
            # when called from task.build_dataset()
            self.config = cfg

        self.data_type = self.config.data_type

        self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}
        self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()}

    def build_datasets(self):
        # download, split, etc...
        # only called on 1 GPU/TPU in distributed

        if is_main_process():
            self._download_data()

        if is_dist_avail_and_initialized():
            dist.barrier()

        # at this point, all the annotations and image/videos should be all downloaded to the specified locations.
        logging.info("Building datasets...")
        datasets = self.build()  # dataset['train'/'val'/'test']

        return datasets

    def build_processors(self):
        vis_proc_cfg = self.config.get("vis_processor")
        txt_proc_cfg = self.config.get("text_processor")

        if vis_proc_cfg is not None:
            vis_train_cfg = vis_proc_cfg.get("train")
            vis_eval_cfg = vis_proc_cfg.get("eval")

            self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg)
            self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg)

        if txt_proc_cfg is not None:
            txt_train_cfg = txt_proc_cfg.get("train")
            txt_eval_cfg = txt_proc_cfg.get("eval")

            self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg)
            self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg)

    @staticmethod
    def _build_proc_from_cfg(cfg):
        return (
            registry.get_processor_class(cfg.name).from_config(cfg)
            if cfg is not None
            else None
        )

    @classmethod
    def default_config_path(cls, type="default"):
        return get_abs_path(cls.DATASET_CONFIG_DICT[type])

    def _download_data(self):
        self._download_ann()
        self._download_vis()

    def _download_ann(self):
        """
        Download annotation files if necessary.
        All the vision-language datasets should have annotations of unified format.

        storage_path can be:
          (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative.
          (2) basename/dirname: will be suffixed with base name of URL if dirname is provided.

        Local annotation paths should be relative.
        """
        anns = self.config.build_info.annotations

        splits = anns.keys()

        cache_root = registry.get_path("cache_root")

        for split in splits:
            info = anns[split]

            urls, storage_paths = info.get("url", None), info.storage

            if isinstance(urls, str):
                urls = [urls]
            if isinstance(storage_paths, str):
                storage_paths = [storage_paths]

            assert len(urls) == len(storage_paths)

            for url_or_filename, storage_path in zip(urls, storage_paths):
                # if storage_path is relative, make it full by prefixing with cache_root.
                if not os.path.isabs(storage_path):
                    storage_path = os.path.join(cache_root, storage_path)

                dirname = os.path.dirname(storage_path)
                if not os.path.exists(dirname):
                    os.makedirs(dirname)

                if os.path.isfile(url_or_filename):
                    src, dst = url_or_filename, storage_path
                    if not os.path.exists(dst):
                        shutil.copyfile(src=src, dst=dst)
                    else:
                        logging.info("Using existing file {}.".format(dst))
                else:
                    if os.path.isdir(storage_path):
                        # if only dirname is provided, suffix with basename of URL.
                        raise ValueError(
                            "Expecting storage_path to be a file path, got directory {}".format(
                                storage_path
                            )
                        )
                    else:
                        filename = os.path.basename(storage_path)

                    download_url(url=url_or_filename, root=dirname, filename=filename)

    def _download_vis(self):

        storage_path = self.config.build_info.get(self.data_type).storage
        storage_path = get_cache_path(storage_path)

        if not os.path.exists(storage_path):
            warnings.warn(
                f"""
                The specified path {storage_path} for visual inputs does not exist.
                Please provide a correct path to the visual inputs or
                refer to datasets/download_scripts/README.md for downloading instructions.
                """
            )

    def build(self):
        """
        Create by split datasets inheriting torch.utils.data.Datasets.

        # build() can be dataset-specific. Overwrite to customize.
        """
        self.build_processors()

        build_info = self.config.build_info

        ann_info = build_info.annotations
        vis_info = build_info.get(self.data_type)

        datasets = dict()
        for split in ann_info.keys():
            if split not in ["train", "val", "test"]:
                continue

            is_train = split == "train"

            # processors
            vis_processor = (
                self.vis_processors["train"]
                if is_train
                else self.vis_processors["eval"]
            )
            text_processor = (
                self.text_processors["train"]
                if is_train
                else self.text_processors["eval"]
            )

            # annotation path
            ann_paths = ann_info.get(split).storage
            if isinstance(ann_paths, str):
                ann_paths = [ann_paths]

            abs_ann_paths = []
            for ann_path in ann_paths:
                if not os.path.isabs(ann_path):
                    ann_path = get_cache_path(ann_path)
                abs_ann_paths.append(ann_path)
            ann_paths = abs_ann_paths

            # visual data storage path
            vis_path = os.path.join(vis_info.storage, split)

            if not os.path.isabs(vis_path):
                # vis_path = os.path.join(utils.get_cache_path(), vis_path)
                vis_path = get_cache_path(vis_path)

            if not os.path.exists(vis_path):
                warnings.warn("storage path {} does not exist.".format(vis_path))

            # create datasets
            dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls
            datasets[split] = dataset_cls(
                vis_processor=vis_processor,
                text_processor=text_processor,
                ann_paths=ann_paths,
                vis_root=vis_path,
            )

        return datasets




class Registry:
    mapping = {
        "builder_name_mapping": {},
        "task_name_mapping": {},
        "processor_name_mapping": {},
        "model_name_mapping": {},
        "lr_scheduler_name_mapping": {},
        "runner_name_mapping": {},
        "state": {},
        "paths": {},
    }

    @classmethod
    def register_builder(cls, name):
        r"""Register a dataset builder to registry with key 'name'

        Args:
            name: Key with which the builder will be registered.

        Usage:

            # from lavi.common.registry import registry
            # from lavi.datasets.base_dataset_builder import BaseDatasetBuilder
        """

        def wrap(builder_cls):
            # from musilingo.datasets.builders.base_dataset_builder import BaseDatasetBuilder

            assert issubclass(
                builder_cls, BaseDatasetBuilder
            ), "All builders must inherit BaseDatasetBuilder class, found {}".format(
                builder_cls
            )
            if name in cls.mapping["builder_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["builder_name_mapping"][name]
                    )
                )
            cls.mapping["builder_name_mapping"][name] = builder_cls
            return builder_cls

        return wrap

    @classmethod
    def register_task(cls, name):
        r"""Register a task to registry with key 'name'

        Args:
            name: Key with which the task will be registered.

        Usage:

            # from lavi.common.registry import registry
        """

        def wrap(task_cls):
            # from musilingo.tasks.base_task import BaseTask

            assert issubclass(
                task_cls, BaseTask
            ), "All tasks must inherit BaseTask class"
            if name in cls.mapping["task_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["task_name_mapping"][name]
                    )
                )
            cls.mapping["task_name_mapping"][name] = task_cls
            return task_cls

        return wrap

    @classmethod
    def register_model(cls, name):
        r"""Register a task to registry with key 'name'

        Args:
            name: Key with which the task will be registered.

        Usage:

            # from lavi.common.registry import registry
        """

        def wrap(model_cls):

            assert issubclass(
                model_cls, BaseModel
            ), "All models must inherit BaseModel class"
            if name in cls.mapping["model_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["model_name_mapping"][name]
                    )
                )
            cls.mapping["model_name_mapping"][name] = model_cls
            return model_cls

        return wrap

    @classmethod
    def register_processor(cls, name):
        r"""Register a processor to registry with key 'name'

        Args:
            name: Key with which the task will be registered.

        Usage:

            # from lavi.common.registry import registry
        """

        def wrap(processor_cls):
            # from musilingo.processors import BaseProcessor

            assert issubclass(
                processor_cls, BaseProcessor
            ), "All processors must inherit BaseProcessor class"
            if name in cls.mapping["processor_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["processor_name_mapping"][name]
                    )
                )
            cls.mapping["processor_name_mapping"][name] = processor_cls
            return processor_cls

        return wrap

    @classmethod
    def register_lr_scheduler(cls, name):
        r"""Register a model to registry with key 'name'

        Args:
            name: Key with which the task will be registered.

        Usage:

            # from minigpt4.common.registry import registry
        """

        def wrap(lr_sched_cls):
            if name in cls.mapping["lr_scheduler_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["lr_scheduler_name_mapping"][name]
                    )
                )
            cls.mapping["lr_scheduler_name_mapping"][name] = lr_sched_cls
            return lr_sched_cls

        return wrap

    @classmethod
    def register_runner(cls, name):
        r"""Register a model to registry with key 'name'

        Args:
            name: Key with which the task will be registered.

        Usage:

            # from minigpt4.common.registry import registry
        """

        def wrap(runner_cls):
            if name in cls.mapping["runner_name_mapping"]:
                raise KeyError(
                    "Name '{}' already registered for {}.".format(
                        name, cls.mapping["runner_name_mapping"][name]
                    )
                )
            cls.mapping["runner_name_mapping"][name] = runner_cls
            return runner_cls

        return wrap

    @classmethod
    def register_path(cls, name, path):
        r"""Register a path to registry with key 'name'

        Args:
            name: Key with which the path will be registered.

        Usage:

            # from minigpt4.common.registry import registry
        """
        assert isinstance(path, str), "All path must be str."
        if name in cls.mapping["paths"]:
            raise KeyError("Name '{}' already registered.".format(name))
        cls.mapping["paths"][name] = path

    @classmethod
    def register(cls, name, obj):
        r"""Register an item to registry with key 'name'

        Args:
            name: Key with which the item will be registered.

        Usage::

            # from minigpt4.common.registry import registry

            registry.register("config", {})
        """
        path = name.split(".")
        current = cls.mapping["state"]

        for part in path[:-1]:
            if part not in current:
                current[part] = {}
            current = current[part]

        current[path[-1]] = obj

    # @classmethod
    # def get_trainer_class(cls, name):
    #     return cls.mapping["trainer_name_mapping"].get(name, None)

    @classmethod
    def get_builder_class(cls, name):
        return cls.mapping["builder_name_mapping"].get(name, None)

    @classmethod
    def get_model_class(cls, name):
        return cls.mapping["model_name_mapping"].get(name, None)

    @classmethod
    def get_task_class(cls, name):
        return cls.mapping["task_name_mapping"].get(name, None)

    @classmethod
    def get_processor_class(cls, name):
        return cls.mapping["processor_name_mapping"].get(name, None)

    @classmethod
    def get_lr_scheduler_class(cls, name):
        return cls.mapping["lr_scheduler_name_mapping"].get(name, None)

    @classmethod
    def get_runner_class(cls, name):
        return cls.mapping["runner_name_mapping"].get(name, None)

    @classmethod
    def list_runners(cls):
        return sorted(cls.mapping["runner_name_mapping"].keys())

    @classmethod
    def list_models(cls):
        return sorted(cls.mapping["model_name_mapping"].keys())

    @classmethod
    def list_tasks(cls):
        return sorted(cls.mapping["task_name_mapping"].keys())

    @classmethod
    def list_processors(cls):
        return sorted(cls.mapping["processor_name_mapping"].keys())

    @classmethod
    def list_lr_schedulers(cls):
        return sorted(cls.mapping["lr_scheduler_name_mapping"].keys())

    @classmethod
    def list_datasets(cls):
        return sorted(cls.mapping["builder_name_mapping"].keys())

    @classmethod
    def get_path(cls, name):
        return cls.mapping["paths"].get(name, None)

    @classmethod
    def get(cls, name, default=None, no_warning=False):
        r"""Get an item from registry with key 'name'

        Args:
            name (string): Key whose value needs to be retrieved.
            default: If passed and key is not in registry, default value will
                     be returned with a warning. Default: None
            no_warning (bool): If passed as True, warning when key doesn't exist
                               will not be generated. Useful for MMF's
                               internal operations. Default: False
        """
        original_name = name
        name = name.split(".")
        value = cls.mapping["state"]
        for subname in name:
            value = value.get(subname, default)
            if value is default:
                break

        if (
            "writer" in cls.mapping["state"]
            and value == default
            and no_warning is False
        ):
            cls.mapping["state"]["writer"].warning(
                "Key {} is not present in registry, returning default value "
                "of {}".format(original_name, default)
            )
        return value

    @classmethod
    def unregister(cls, name):
        r"""Remove an item from registry with key 'name'

        Args:
            name: Key which needs to be removed.
        Usage::

            # from mmf.common.registry import registry

            config = registry.unregister("config")
        """
        return cls.mapping["state"].pop(name, None)


registry = Registry()


def get_abs_path(rel_path):
    return os.path.join(registry.get_path("library_root"), rel_path)

def is_url(input_url):
    """
    Check if an input string is a url. look for http(s):// and ignoring the case
    """
    is_url = re.match(r"^(?:http)s?://", input_url, re.IGNORECASE) is not None
    return is_url


def download_cached_file(url, check_hash=True, progress=False):
    """
    Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
    If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
    """

    def get_cached_file_path():
        # a hack to sync the file path across processes
        parts = torch.hub.urlparse(url)
        filename = os.path.basename(parts.path)
        cached_file = os.path.join(timm_hub.get_cache_dir(), filename)

        return cached_file

    if is_main_process():
        timm_hub.download_cached_file(url, check_hash, progress)

    if is_dist_avail_and_initialized():
        dist.barrier()

    return get_cached_file_path()

def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True

def is_main_process():
    return get_rank() == 0

def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()

class BaseModel(nn.Module):
    """Base class for models."""

    def __init__(self):
        super().__init__()

    @property
    def device(self):
        return list(self.parameters())[0].device

    def load_checkpoint(self, url_or_filename):
        """
        Load from a finetuned checkpoint.

        This should expect no mismatch in the model keys and the checkpoint keys.
        """

        if is_url(url_or_filename):
            cached_file = download_cached_file(
                url_or_filename, check_hash=False, progress=True
            )
            checkpoint = torch.load(cached_file, map_location="cpu")
        elif os.path.isfile(url_or_filename):
            checkpoint = torch.load(url_or_filename, map_location="cpu")
        else:
            raise RuntimeError("checkpoint url or path is invalid")

        if "model" in checkpoint.keys():
            state_dict = checkpoint["model"]
        else:
            state_dict = checkpoint

        msg = self.load_state_dict(state_dict, strict=False)

        logging.info("Missing keys {}".format(msg.missing_keys))
        logging.info("load checkpoint from %s" % url_or_filename)

        return msg

    @classmethod
    def from_pretrained(cls, model_type):
        """
        Build a pretrained model from default configuration file, specified by model_type.

        Args:
            - model_type (str): model type, specifying architecture and checkpoints.

        Returns:
            - model (nn.Module): pretrained or finetuned model, depending on the configuration.
        """
        model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model
        model = cls.from_config(model_cfg)

        return model

    @classmethod
    def default_config_path(cls, model_type):
        assert (
            model_type in cls.PRETRAINED_MODEL_CONFIG_DICT
        ), "Unknown model type {}".format(model_type)
        return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type])

    def load_checkpoint_from_config(self, cfg, **kwargs):
        """
        Load checkpoint as specified in the config file.

        If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model.
        When loading the pretrained model, each task-specific architecture may define their
        own load_from_pretrained() method.
        """
        load_finetuned = cfg.get("load_finetuned", True)
        if load_finetuned:
            finetune_path = cfg.get("finetuned", None)
            assert (
                finetune_path is not None
            ), "Found load_finetuned is True, but finetune_path is None."
            self.load_checkpoint(url_or_filename=finetune_path)
        else:
            # load pre-trained weights
            pretrain_path = cfg.get("pretrained", None)
            assert "Found load_finetuned is False, but pretrain_path is None."
            self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs)

    def before_evaluation(self, **kwargs):
        pass

    def show_n_params(self, return_str=True):
        tot = 0
        for p in self.parameters():
            w = 1
            for x in p.shape:
                w *= x
            tot += w
        if return_str:
            if tot >= 1e6:
                return "{:.1f}M".format(tot / 1e6)
            else:
                return "{:.1f}K".format(tot / 1e3)
        else:
            return tot

LLAMA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
            `past_key_values`).

            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
            information on the default strategy.

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.n_positions - 1]`.

            [What are position IDs?](../glossary#position-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


LLAMA_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`LlamaConfig`]):
            Model configuration class with all the parameters of the model. Initializing with a config file does not
            load the weights associated with the model, only the configuration. Check out the
            [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "LlamaConfig"


# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
):
    """
    Make causal mask used for bi-directional self-attention.
    """
    bsz, tgt_len = input_ids_shape
    mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
    mask_cond = torch.arange(mask.size(-1), device=device)
    mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
    mask = mask.to(dtype)

    if past_key_values_length > 0:
        mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
    return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)


# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
    """
    Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
    """
    bsz, src_len = mask.size()
    tgt_len = tgt_len if tgt_len is not None else src_len

    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)

    inverted_mask = 1.0 - expanded_mask

    return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)


class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states


class LlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
        self.register_buffer("inv_freq", inv_freq)

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    gather_indices = position_ids[:, None, :, None]  # [bs, 1, seq_len, 1]
    gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
    cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
    sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed




class LlamaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class LlamaAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = config.max_position_embeddings

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
        self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        bsz, q_len, _ = hidden_states.size()

        query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]
        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
        # [bsz, nh, t, hd]

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
                f" {attn_weights.size()}"
            )

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask
            attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))

        # upcast attention to fp32
        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
        attn_output = torch.matmul(attn_weights, value_states)

        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value



class LlamaDecoderLayer(nn.Module):
    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(config=config)
        self.mlp = LlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class LlamaPreTrainedModel(PreTrainedModel):
    config_class = LlamaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["LlamaDecoderLayer"]
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, LlamaModel):
            module.gradient_checkpointing = value


@add_start_docstrings(
    "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
    LLAMA_START_DOCSTRING,
)
class LlamaModel(LlamaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]

    Args:
        config: LlamaConfig
    """

    def __init__(self, config: LlamaConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
    def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
        # create causal mask
        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
        combined_attention_mask = None
        if input_shape[-1] > 1:
            combined_attention_mask = _make_causal_mask(
                input_shape,
                inputs_embeds.dtype,
                device=inputs_embeds.device,
                past_key_values_length=past_key_values_length,
            )

        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
                inputs_embeds.device
            )
            combined_attention_mask = (
                expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
            )

        return combined_attention_mask

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        query_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        if query_embeds is not None:
            inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
            batch_size, seq_length, _ = inputs_embeds.shape

        seq_length_with_past = seq_length
        past_key_values_length = 0

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()

        # embed positions
        if attention_mask is None:
            attention_mask = torch.ones(
                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
            )
        attention_mask = self._prepare_decoder_attention_mask(
            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
        )

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    position_ids,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )



class LlamaForCausalLM(LlamaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.model = LlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        query_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, LlamaForCausalLM

        >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)

        >>> prompt = "Hey, are you consciours? Can you talk to me?"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> # Generate
        >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            query_embeds=query_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
                query_embeds = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "query_embeds": query_embeds,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
        return reordered_past


@registry.register_model("musilingo")
class MusiLingo(BaseModel):
    """
    MERT GPT-LLAMA model.
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "pretrain_vicuna": "configs/models/musilingo.yaml",
    }

    def __init__(
        self,
        mert_model,
        llama_model,
        config,
        prompt_path="",
        prompt_template="",
        max_txt_len=32,
        end_sym='\n',
        low_resource=False,  # use 8 bit and put vit in cpu
        device_8bit=0,  # the device of 8bit model should be set when loading and cannot be changed anymore.
    ):
        super().__init__()

        self.low_resource = low_resource

        print('Loading Audio Encoder')
        self.audio_encoder = AutoModel.from_pretrained(mert_model, trust_remote_code=True)
        # loading the corresponding preprocessor config
        self.processor = Wav2Vec2FeatureExtractor.from_pretrained(mert_model, trust_remote_code=True)

        for name, param in self.audio_encoder.named_parameters():
            param.requires_grad = False
        self.audio_encoder = self.audio_encoder.eval()

        print('Loading Audio Encoder Done')

        print('Loading LLAMA')
        self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
        self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token

        if self.low_resource:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_model,
                torch_dtype=torch.float16,
                load_in_8bit=True,
                device_map={'': device_8bit}
            )
        else:
            self.llama_model = LlamaForCausalLM.from_pretrained(
                llama_model,
                torch_dtype=torch.float16,
            )

        for name, param in self.llama_model.named_parameters():
            param.requires_grad = False
        print('Loading LLAMA Done')

        self.llama_proj = nn.Linear(
            self.audio_encoder.config.hidden_size, self.llama_model.config.hidden_size
        )
        self.max_txt_len = max_txt_len
        self.end_sym = end_sym

        self.prompt_template = prompt_template

        if prompt_path:
            with open(prompt_path, 'r') as f:
                raw_prompts = f.read().splitlines()
            filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<AudioHere>" in raw_prompt]
            self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
            print('Load {} training prompts'.format(len(self.prompt_list)))
            print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
        else:
            self.prompt_list = []

    def audioenc_to_cpu(self):
        self.audio_encoder.to("cpu")
        self.audio_encoder.float()

    def encode_audio(self, audio, attn=None):
        device = audio.device
        if self.low_resource:
            self.audioenc_to_cpu()
            audio = audio.to("cpu")

        if attn is None:

            audio_embeds = torch.stack(self.audio_encoder(input_values=audio, 
                                                          output_hidden_states=True).hidden_states) # [25, B, T, 1024]
            audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]

        else:
  
            audio_embeds = torch.stack(self.audio_encoder(input_values=audio, 
                                                          output_hidden_states=True, 
                                                          attention_mask=attn).hidden_states) # [25, B, T, 1024]
            audio_embeds = audio_embeds.transpose(0, 1).mean(-3) #[B, T, 1024]
            
        # Average time steps:
        t = 325
        B, T, D = audio_embeds.shape
        avg_tmp = audio_embeds[:, :T//t*t].reshape(B, T//t, t, D).mean(2)

        # Average the remaining steps
        if T % t > 0:
          avg_last = audio_embeds[:, T//t*t:].reshape(B, 1, T%t, D).mean(2)
          audio_embeds = torch.concat([avg_tmp, avg_last], dim=1)
        else:
          audio_embeds = avg_tmp
        audio_embeds = audio_embeds.to(device)
        inputs_llama = self.llama_proj(audio_embeds)
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(audio.device)
        return inputs_llama, atts_llama

    def prompt_wrap(self, audio_embeds, atts_audio, prompt):
        if prompt:
            batch_size = audio_embeds.shape[0]
            p_before, p_after = prompt.split('<AudioHere>')
            p_before_tokens = self.llama_tokenizer(
                p_before, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
            p_after_tokens = self.llama_tokenizer(
                p_after, return_tensors="pt", add_special_tokens=False).to(audio_embeds.device)
            p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1)
            p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1)
            wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
            wrapped_atts_audio = atts_audio[:, :1].expand(-1, wrapped_audio_embeds.shape[1])
            return wrapped_audio_embeds, wrapped_atts_audio
        else:
            return audio_embeds, atts_audio
        
    def instruction_prompt_wrap(self, audio_embeds, atts_audio, prompt):
        if prompt:
            batch_size = audio_embeds.shape[0]
            p_before = []
            p_after = []

            for i in range(batch_size):
                p_b, p_a = prompt[i].split('<AudioHere>')
                p_before.append(p_b)
                p_after.append(p_a)
  
            p_before_tokens = self.llama_tokenizer(
                p_before, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
            p_after_tokens = self.llama_tokenizer(
                p_after, return_tensors="pt", padding='longest', add_special_tokens=False).to(audio_embeds.device)
            p_before_embeds = self.llama_model.model.embed_tokens(p_before_tokens.input_ids)
            p_after_embeds = self.llama_model.model.embed_tokens(p_after_tokens.input_ids)
            wrapped_audio_embeds = torch.cat([p_before_embeds, audio_embeds, p_after_embeds], dim=1)
            wrapped_atts_audio = torch.cat([p_before_tokens.attention_mask, atts_audio, p_after_tokens.attention_mask], dim=1)
            return wrapped_audio_embeds, wrapped_atts_audio
        else:
            return audio_embeds, atts_audio


    def forward(self, samples):
        audio = samples["audio"]
        attn = samples["attention_mask"] if "attention_mask" in samples else None
        audio_embeds, atts_audio = self.encode_audio(audio, attn)

        if 'instruction_input' in samples:  # instruction tuning dataset
            instruction_prompt = []
            for instruction in samples['instruction_input']:
                prompt = '<Audio><AudioHere></Audio> ' + instruction
                instruction_prompt.append(self.prompt_template.format(prompt))
            audio_embeds, atts_audio = self.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)

        elif self.prompt_list:
            prompt = random.choice(self.prompt_list)
            audio_embeds, atts_audio = self.prompt_wrap(audio_embeds, atts_audio, prompt)

        self.llama_tokenizer.padding_side = "right"

        text = [t + self.end_sym for t in samples["text_input"]]

        to_regress_tokens = self.llama_tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
            add_special_tokens=False
        ).to(audio.device)

        targets = to_regress_tokens.input_ids.masked_fill(
            to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
        )

        empty_targets = (
            torch.ones([atts_audio.shape[0], atts_audio.shape[1]+1],
                       dtype=torch.long).to(audio.device).fill_(-100)  # plus one for bos
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        batch_size = audio_embeds.shape[0]
        bos = torch.ones([batch_size, 1],
                         dtype=to_regress_tokens.input_ids.dtype,
                         device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.llama_model.model.embed_tokens(bos)
        atts_bos = atts_audio[:, :1]

        to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
        inputs_embeds = torch.cat([bos_embeds, audio_embeds, to_regress_embeds], dim=1)
        attention_mask = torch.cat([atts_bos, atts_audio, to_regress_tokens.attention_mask], dim=1)

        outputs = self.llama_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            return_dict=True,
            labels=targets,
        )
        loss = outputs.loss

        return {"loss": loss}

    @classmethod
    def from_config(cls, cfg):
        mert_model = cfg.get("mert_model", "")
        llama_model = cfg.get("llama_model")

        low_resource = cfg.get("low_resource", False)
        device_8bit = cfg.get("device_8bit", 0)

        prompt_path = cfg.get("prompt_path", "")
        prompt_template = cfg.get("prompt_template", "")
        max_txt_len = cfg.get("max_txt_len", 32)
        end_sym = cfg.get("end_sym", '\n')

        model = cls(
            mert_model=mert_model,
            llama_model=llama_model,
            prompt_path=prompt_path,
            prompt_template=prompt_template,
            max_txt_len=max_txt_len,
            end_sym=end_sym,
            low_resource=low_resource,
            device_8bit=device_8bit,
        )

        ckpt_path = cfg.get("ckpt", "")  # load ckpt weights of MusiLingo
        if ckpt_path:
            print("Load MERT-LLM Checkpoint: {}".format(ckpt_path))
            ckpt = torch.load(ckpt_path, map_location="cpu")
            msg = model.load_state_dict(ckpt['model'], strict=False)

        return model


class MusilingoModel(PreTrainedModel):
    config_class = MusiLingoConfig
    def __init__(self, config):
        super().__init__(config)
        self.model = MusiLingo(
            mert_model=config.mert_model,
            llama_model=config.llama_model,
            config=config,
            prompt_path=config.prompt_path,
            prompt_template=config.prompt_template,
            max_txt_len=config.max_txt_len,
            end_sym=config.end_sym,
            low_resource=config.low_resource,
            device_8bit=config.device_8bit
            # self.linear_ckpt_path = config.linear_ckpt_path``
        )
        
    
    def forward(self, tensor):
        return self.model.forward(tensor)