metadata
language: lt
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
widget:
- label: Common Voice sample 11
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/resolve/main/sample11.flac
- label: Common Voice sample 74
src: >-
https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/resolve/main/sample74.flac
model-index:
- name: XLSR Wav2Vec2 Lithuanian by Mehrdad Farahani
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice lt
type: common_voice
args: lt
metrics:
- name: Test WER
type: wer
value: 34.66
Wav2Vec2-Large-XLSR-53-Lithuanian
Fine-tuned facebook/wav2vec2-large-xlsr-53 in Lithuanian using Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
Requirements
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
Normalizer
!wget -O normalizer.py https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-lithuanian/raw/main/normalizer.py
Prediction
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian").to(device)
dataset = load_dataset("common_voice", "lt", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
Output: ```text reference: jos tikslas buvo rasti kelią į ramųjį vandenyną šiaurės amerikoje predicted: jos tikstas buvo rasikelia į ramų į vandenyna šiaurės amerikoje
reference: pietrytinėje dalyje likusių katalikų kapinių teritorija po antrojo pasaulinio karo dar padidėjo predicted: pietrytinė daljelikusių gatalikų kapinių teritoriją pontro pasaulnio karo dar padidėjo
reference: koplyčioje pakabintas aušros vartų marijos paveikslas predicted: koplyčioje pakagintas aušos fortų marijos paveikslas
reference: yra politinių debatų vedėjas predicted: yra politinių debatų vedėjas
reference: žmogui taip pat gali būti mirtinai pavojingi predicted: žmogui taip pat gali būti mirtinai pavojingi
reference: tuo pačiu metu kijeve nuverstas netekęs vokietijos paramos skoropadskis predicted: tuo pačiu metu kiei venų verstas netekės vokietijos paramos kropadskis
reference: visos dvylika komandų tarpusavyje sužaidžia po dvi rungtynes predicted: visos dvylika komandų tarpuso vysų žaidžia po dvi rungtynės
reference: kaukazo regioną sudaro kaukazo kalnai ir gretimos žemumos predicted: kau kazo regioną sudaro kaukazo kalnai ir gretimos žemumus
reference: tarptautinių ir rusiškų šaškių kandidatas į sporto meistrus predicted: tarptautinio ir rusiškos šaškių kandidatus į sporto meistrus
reference: prasideda putorano plynaukštės pietiniame pakraštyje predicted: prasideda futorano prynaukštės pietiniame pakraštyje
reference: miestas skirstomas į senamiestį ir naujamiestį predicted: miestas skirstomas į senamėsti ir naujamiestė
reference: tais pačiais metais pelnė bronzą pasaulio taurės kolumbijos etape komandinio sprinto rungtyje predicted: tais pačiais metais pelnį mronsa pasaulio taurės kolumbijos etape komandinio sprento rungtyje
reference: prasideda putorano plynaukštės pietiniame pakraštyje predicted: prasideda futorano prynaukštės pietiniame pakraštyje
reference: moterų tarptautinės meistrės vardas yra viena pakopa žemesnis už moterų tarptautinės korespondencinių šachmatų didmeistrės predicted: moterų tarptautinės meistrės vardas yra gana pakopo žymesnis už moterų tarptautinės kūrespondencinių šachmatų didmesčias
reference: teritoriją dengia tropinės džiunglės predicted: teritorija dengia tropinės žiunglės
reference: pastaroji dažnai pereina į nimcovičiaus gynybą arba bogoliubovo gynybą predicted: pastaruoji dažnai pereina nimcovičiaus gynyba arba bogalių buvo gymyba
reference: už tai buvo suimtas ir tris mėnesius sėdėjo butyrkų kalėjime predicted: užtai buvo sujumtas ir tris mėne susiedėjo butirkų kalėjime
reference: tai didžiausias pagal gyventojų skaičių regionas predicted: tai didžiausias pagal gyventojų skaičių redionus
reference: vilkyškių miške taip pat auga raganų eglė predicted: vilkiškimiškė taip pat auga ragano eglė
reference: kitas gavo skaraitiškės dvarą su palivarkais predicted: kitas gavos karaitiškės dvarą spolivarkais
## Evaluation
The model can be evaluated as follows on the Persian (Farsi) test data of Common Voice.
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
from normalizer import normalizer
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-lithuanian").to(device)
dataset = load_dataset("common_voice", "lt", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"remove_extra_space": True},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
]
Test Result:
- WER: 34.66%
Training & Report
The Common Voice train
, validation
datasets were used for training.
You can see the training states here
The script used for training can be found here
Questions?
Post a Github issue on the Wav2Vec repo.