|
--- |
|
library_name: transformers |
|
license: llama3.2 |
|
license_link: https://huggingface.co/meta-llama/Llama-3.2-3B/blob/main/LICENSE.txt |
|
base_model: meta-llama/Llama-3.2-3B |
|
datasets: |
|
- macadeliccc/US-SupremeCourtVerdicts |
|
- macadeliccc/US-FederalLaws |
|
tags: |
|
- generated_from_trainer |
|
- llama-3 |
|
- spectrum |
|
- axolotl |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
# Magistrate 3.2 3B |
|
|
|
Continued pretraining applied to [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) using no synthetic legal data. ~250M tokens. |
|
|
|
The model achieves the following results on the evaluation set: |
|
- Loss: 0.6802 |
|
|
|
Instruct version is available [here]() |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: meta-llama/Llama-3.2-3B |
|
model_type: LlamaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: json |
|
data_files: "data/amendments_with_content_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/federal_rules_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/cornell_legal_encyclopedias_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/pocket_guide_for_judges_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/us_federal_code.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/us_supreme_court_summaries_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/us_supreme_court_converted.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/ucfr.json" |
|
type: completion |
|
- path: json |
|
data_files: "data/map-code-filtered.json" |
|
type: completion |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./outputs/lora-out |
|
|
|
sequence_len: 8192 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
# adapter: lora |
|
# lora_model_dir: |
|
# lora_r: 128 |
|
# lora_alpha: 32 |
|
# lora_dropout: 0.05 |
|
# lora_target_linear: true |
|
# lora_fan_in_fan_out: |
|
# lora_modules_to_save: |
|
# - embed_tokens |
|
# - lm_head |
|
|
|
unfrozen_parameters: |
|
- ^lm_head.weight$ |
|
- ^model.embed_tokens.weight$ |
|
# mlp.down_proj layers |
|
- model.layers.0.mlp.down_proj |
|
- model.layers.1.mlp.down_proj |
|
- model.layers.17.mlp.down_proj |
|
- model.layers.19.mlp.down_proj |
|
- model.layers.18.mlp.down_proj |
|
- model.layers.5.mlp.down_proj |
|
- model.layers.20.mlp.down_proj |
|
- model.layers.2.mlp.down_proj |
|
- model.layers.4.mlp.down_proj |
|
- model.layers.6.mlp.down_proj |
|
- model.layers.3.mlp.down_proj |
|
- model.layers.16.mlp.down_proj |
|
- model.layers.15.mlp.down_proj |
|
- model.layers.13.mlp.down_proj |
|
# mlp.gate_proj layers |
|
- model.layers.0.mlp.gate_proj |
|
- model.layers.1.mlp.gate_proj |
|
- model.layers.2.mlp.gate_proj |
|
- model.layers.3.mlp.gate_proj |
|
- model.layers.22.mlp.gate_proj |
|
- model.layers.21.mlp.gate_proj |
|
- model.layers.20.mlp.gate_proj |
|
- model.layers.23.mlp.gate_proj |
|
- model.layers.19.mlp.gate_proj |
|
- model.layers.4.mlp.gate_proj |
|
- model.layers.18.mlp.gate_proj |
|
- model.layers.17.mlp.gate_proj |
|
- model.layers.5.mlp.gate_proj |
|
- model.layers.24.mlp.gate_proj |
|
# mlp.up_proj layers |
|
- model.layers.4.mlp.up_proj |
|
- model.layers.3.mlp.up_proj |
|
- model.layers.5.mlp.up_proj |
|
- model.layers.6.mlp.up_proj |
|
- model.layers.7.mlp.up_proj |
|
- model.layers.2.mlp.up_proj |
|
- model.layers.8.mlp.up_proj |
|
- model.layers.14.mlp.up_proj |
|
- model.layers.13.mlp.up_proj |
|
- model.layers.11.mlp.up_proj |
|
- model.layers.9.mlp.up_proj |
|
- model.layers.1.mlp.up_proj |
|
- model.layers.15.mlp.up_proj |
|
- model.layers.12.mlp.up_proj |
|
# self_attn.k_proj layers |
|
- model.layers.25.self_attn.k_proj |
|
- model.layers.22.self_attn.k_proj |
|
- model.layers.19.self_attn.k_proj |
|
- model.layers.20.self_attn.k_proj |
|
- model.layers.17.self_attn.k_proj |
|
- model.layers.24.self_attn.k_proj |
|
- model.layers.23.self_attn.k_proj |
|
- model.layers.18.self_attn.k_proj |
|
- model.layers.21.self_attn.k_proj |
|
- model.layers.27.self_attn.k_proj |
|
- model.layers.15.self_attn.k_proj |
|
- model.layers.10.self_attn.k_proj |
|
- model.layers.6.self_attn.k_proj |
|
- model.layers.5.self_attn.k_proj |
|
# self_attn.o_proj layers |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_32bit |
|
|
|
# Gradient clipping max norm |
|
max_grad_norm: 1.0 |
|
noisy_embedding_alpha: 0 # no noisy embedding to ensure maximal memorization |
|
|
|
|
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
s2_attention: |
|
|
|
warmup_steps: 690 |
|
evals_per_epoch: 2 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: deepspeed_configs/zero3.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
|
|
|
|
|
|
## Model description |
|
|
|
This is a base model trained on US Supreme Court proceedings, US federal code and regulations. |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended for research purposes. You are liable for all model outputs. |
|
|
|
## Training and evaluation data |
|
|
|
The training data consists of US Supreme Court verdicts, federal regulations, laws and treaties. |
|
|
|
Some other resources have been included from institutions like CLL to fill in the gaps in knowledge for industry jargon. |
|
|
|
## Training procedure |
|
|
|
Spectrum top 35% fine tune. Thanks to the cognitive computations team for the work done on spectrum. |
|
|
|
Methodology based on Cohere's paper: [To Code, or Not To Code? Exploring Impact of Code in Pre-training](https://arxiv.org/abs/2408.10914) |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 690 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.3589 | 0.0004 | 1 | 1.5640 | |
|
| 0.9936 | 0.4984 | 1154 | 0.9440 | |
|
| 0.8384 | 0.9968 | 2308 | 0.8392 | |
|
| 0.8226 | 1.4963 | 3462 | 0.7802 | |
|
| 0.6568 | 1.9949 | 4616 | 0.7059 | |
|
| 0.5163 | 2.4923 | 5770 | 0.6886 | |
|
| 0.492 | 2.9922 | 6924 | 0.6802 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.0 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.0 |