license: mit | |
# 🍰 Tiny AutoEncoder for Stable Diffusion | |
[TAESD](https://github.com/madebyollin/taesd) is very tiny autoencoder which uses the same "latent API" as Stable Diffusion's VAE. | |
TAESD is useful for [real-time previewing](https://twitter.com/madebyollin/status/1679356448655163394) of the SD generation process. | |
This repo contains `.safetensors` versions of the TAESD weights. | |
For SDXL, use [TAESDXL](https://huggingface.co/madebyollin/taesdxl/) instead (the SD and SDXL VAEs are [incompatible](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/6#64b8a9c13707b7d603c6ac16)). | |
## Using in 🧨 diffusers | |
```python | |
import torch | |
from diffusers import DiffusionPipeline, AutoencoderTiny | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16 | |
) | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16) | |
pipe = pipe.to("cuda") | |
prompt = "slice of delicious New York-style berry cheesecake" | |
image = pipe(prompt, num_inference_steps=25).images[0] | |
image.save("cheesecake.png") | |
``` |