Edit model card

layoutlmv2-base-uncased_finetuned_docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6030

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
5.326 0.22 50 4.4949
4.292 0.44 100 3.9510
3.9419 0.66 150 3.9100
3.6895 0.88 200 3.5035
3.4052 1.11 250 3.4030
3.1405 1.33 300 3.2100
2.8966 1.55 350 2.9803
2.7874 1.77 400 2.7811
2.5385 1.99 450 2.4748
2.1532 2.21 500 2.5843
1.994 2.43 550 2.5459
1.8322 2.65 600 2.2316
1.7005 2.88 650 2.1888
1.4758 3.1 700 2.4578
1.3543 3.32 750 2.3368
1.1939 3.54 800 2.9737
1.294 3.76 850 2.4907
1.4519 3.98 900 1.9276
1.0517 4.2 950 2.9981
0.8171 4.42 1000 2.5618
1.0456 4.65 1050 2.3139
0.9222 4.87 1100 2.4243
0.758 5.09 1150 2.8167
0.7203 5.31 1200 2.9342
0.6748 5.53 1250 2.6396
0.6821 5.75 1300 2.5629
0.5898 5.97 1350 3.0276
0.3135 6.19 1400 3.2611
0.4407 6.42 1450 3.1793
0.5303 6.64 1500 3.0511
0.5294 6.86 1550 3.1106
0.3149 7.08 1600 3.2933
0.199 7.3 1650 3.4207
0.164 7.52 1700 3.4379
0.5258 7.74 1750 3.1339
0.336 7.96 1800 3.2394
0.3294 8.19 1850 3.0956
0.1587 8.41 1900 3.4282
0.2375 8.63 1950 3.3718
0.117 8.85 2000 3.5646
0.2873 9.07 2050 3.5213
0.2206 9.29 2100 3.5387
0.2503 9.51 2150 3.5683
0.0763 9.73 2200 3.6119
0.1344 9.96 2250 3.6030

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.