metadata
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: I love AutoTrain
datasets:
- madroid/autotrain-data-flex-demo-2
co2_eq_emissions:
emissions: 0.01231885764237346
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 89717143986
- CO2 Emissions (in grams): 0.0123
Validation Metrics
- Loss: 0.112
- Accuracy: 0.990
- Macro F1: 0.976
- Micro F1: 0.990
- Weighted F1: 0.990
- Macro Precision: 0.978
- Micro Precision: 0.990
- Weighted Precision: 0.990
- Macro Recall: 0.974
- Micro Recall: 0.990
- Weighted Recall: 0.990
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/madroid/autotrain-flex-demo-2-89717143986
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("madroid/autotrain-flex-demo-2-89717143986", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("madroid/autotrain-flex-demo-2-89717143986", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)