python code
Can you code python to run your model?
?????????????????
code python
how to use flux1-dev-bnb-nf4 with python?
from diffusers import FluxPipeline
import torch
ckpt_id = "black-forest-labs/FLUX.1-schnell"
prompt = [
"an astronaut riding a horse",
# more prompts here
]
height, width = 1024, 1024
denoising
pipe = FluxPipeline.from_pretrained(
ckpt_id,
torch_dtype=torch.bfloat16,
)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level)
image = pipe(
prompt,
num_inference_steps=1,
guidance_scale=0.0,
height=height,
width=width,
).images[0]
print('Max mem allocated (GB) while denoising:', torch.cuda.max_memory_allocated() / (1024 ** 3))
import matplotlib.pyplot as plt
plt.imshow(image)
plt.show()
how to use flux1-dev-bnb-nf4
instead
black-forest-labs/FLUX.1-schnell
ุุุุุุุุุุุุุุุุุุ
??????
import os
import gc
import torch
from diffusers import FluxPipeline
import matplotlib.pyplot as plt
gc.collect()
torch.cuda.empty_cache()
Define model and prompt
ckpt_id = "magespace/FLUX.1-dev-bnb-nf4"
prompt = ["an astronaut riding a horse"]
height, width = 64, 64
gc.collect()
torch.cuda.empty_cache()
Define the path to your folder
model_path = "/content/a" # Replace with your desired path
gc.collect()
torch.cuda.empty_cache()
Create the folder if it doesn't exist
os.makedirs(model_path, exist_ok=True)
gc.collect()
torch.cuda.empty_cache()
Load the pipeline, specifying the cache directory
pipe = FluxPipeline.from_pretrained(
ckpt_id,
torch_dtype=torch.bfloat16,
cache_dir=model_path,
)
gc.collect()
torch.cuda.empty_cache()
Enable memory optimization techniques
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
pipe.enable_sequential_cpu_offload()
gc.collect()
torch.cuda.empty_cache()
Perform inference (denoising)
image = pipe(
prompt,
num_inference_steps=1,
guidance_scale=0.0,
height=height,
width=width,
).images[0]
gc.collect()
torch.cuda.empty_cache()
Print memory usage
print('Max mem allocated (GB) while denoising:', torch.cuda.max_memory_allocated() / (1024 ** 3))
gc.collect()
torch.cuda.empty_cache()
Display the image
plt.imshow(image)
plt.show()
Your session crashed after using all available RAM.
colab t4