Edit model card

You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

segformer-b4-finetuned-segments-torso

This model is a fine-tuned version of nvidia/mit-b4 on the carllau999/torso_mask dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0823
  • Mean Iou: 0.4815
  • Mean Accuracy: 0.9630
  • Overall Accuracy: 0.9630
  • Accuracy Unlabeled: nan
  • Accuracy Torso: 0.9630
  • Iou Unlabeled: 0.0
  • Iou Torso: 0.9630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Torso Iou Unlabeled Iou Torso
0.1599 1.0 20 0.1789 0.3774 0.7549 0.7549 nan 0.7549 0.0 0.7549
0.0432 2.0 40 0.1167 0.4549 0.9099 0.9099 nan 0.9099 0.0 0.9099
0.0329 3.0 60 0.1006 0.4489 0.8978 0.8978 nan 0.8978 0.0 0.8978
0.0392 4.0 80 0.1742 0.4862 0.9724 0.9724 nan 0.9724 0.0 0.9724
0.025 5.0 100 0.1047 0.4726 0.9452 0.9452 nan 0.9452 0.0 0.9452
0.0229 6.0 120 0.1330 0.4771 0.9543 0.9543 nan 0.9543 0.0 0.9543
0.0184 7.0 140 0.1060 0.4749 0.9498 0.9498 nan 0.9498 0.0 0.9498
0.0117 8.0 160 0.1163 0.4719 0.9439 0.9439 nan 0.9439 0.0 0.9439
0.0202 9.0 180 0.0790 0.4634 0.9268 0.9268 nan 0.9268 0.0 0.9268
0.0124 10.0 200 0.1063 0.4767 0.9534 0.9534 nan 0.9534 0.0 0.9534
0.0159 11.0 220 0.0979 0.4782 0.9563 0.9563 nan 0.9563 0.0 0.9563
0.0093 12.0 240 0.0850 0.4746 0.9492 0.9492 nan 0.9492 0.0 0.9492
0.0117 13.0 260 0.0870 0.4742 0.9484 0.9484 nan 0.9484 0.0 0.9484
0.0087 14.0 280 0.1058 0.4809 0.9617 0.9617 nan 0.9617 0.0 0.9617
0.0085 15.0 300 0.0897 0.4743 0.9485 0.9485 nan 0.9485 0.0 0.9485
0.01 16.0 320 0.0813 0.4774 0.9547 0.9547 nan 0.9547 0.0 0.9547
0.0109 17.0 340 0.0980 0.4810 0.9621 0.9621 nan 0.9621 0.0 0.9621
0.0076 18.0 360 0.0923 0.4787 0.9574 0.9574 nan 0.9574 0.0 0.9574
0.0067 19.0 380 0.0874 0.4778 0.9556 0.9556 nan 0.9556 0.0 0.9556
0.0079 20.0 400 0.0821 0.4766 0.9533 0.9533 nan 0.9533 0.0 0.9533
0.007 21.0 420 0.0876 0.4746 0.9491 0.9491 nan 0.9491 0.0 0.9491
0.0091 22.0 440 0.0924 0.4695 0.9390 0.9390 nan 0.9390 0.0 0.9390
0.0089 23.0 460 0.0711 0.4781 0.9563 0.9563 nan 0.9563 0.0 0.9563
0.0067 24.0 480 0.0743 0.4759 0.9518 0.9518 nan 0.9518 0.0 0.9518
0.0061 25.0 500 0.0868 0.4803 0.9605 0.9605 nan 0.9605 0.0 0.9605
0.0053 26.0 520 0.0814 0.4800 0.9599 0.9599 nan 0.9599 0.0 0.9599
0.0055 27.0 540 0.0779 0.4806 0.9612 0.9612 nan 0.9612 0.0 0.9612
0.0066 28.0 560 0.0810 0.4814 0.9628 0.9628 nan 0.9628 0.0 0.9628
0.0077 29.0 580 0.0814 0.4810 0.9621 0.9621 nan 0.9621 0.0 0.9621
0.008 30.0 600 0.0852 0.4829 0.9658 0.9658 nan 0.9658 0.0 0.9658
0.0062 31.0 620 0.0839 0.4833 0.9665 0.9665 nan 0.9665 0.0 0.9665
0.0063 32.0 640 0.0778 0.4835 0.9671 0.9671 nan 0.9671 0.0 0.9671
0.0055 33.0 660 0.0826 0.4816 0.9633 0.9633 nan 0.9633 0.0 0.9633
0.0057 34.0 680 0.0831 0.4816 0.9632 0.9632 nan 0.9632 0.0 0.9632
0.007 35.0 700 0.0809 0.4815 0.9630 0.9630 nan 0.9630 0.0 0.9630
0.007 36.0 720 0.0776 0.4809 0.9618 0.9618 nan 0.9618 0.0 0.9618
0.0075 37.0 740 0.0787 0.4809 0.9618 0.9618 nan 0.9618 0.0 0.9618
0.0054 38.0 760 0.0838 0.4817 0.9633 0.9633 nan 0.9633 0.0 0.9633
0.0061 39.0 780 0.0824 0.4820 0.9639 0.9639 nan 0.9639 0.0 0.9639
0.0063 40.0 800 0.0799 0.4825 0.9650 0.9650 nan 0.9650 0.0 0.9650
0.0065 41.0 820 0.0805 0.4813 0.9626 0.9626 nan 0.9626 0.0 0.9626
0.0052 42.0 840 0.0838 0.4822 0.9644 0.9644 nan 0.9644 0.0 0.9644
0.007 43.0 860 0.0841 0.4825 0.9650 0.9650 nan 0.9650 0.0 0.9650
0.0054 44.0 880 0.0822 0.4817 0.9634 0.9634 nan 0.9634 0.0 0.9634
0.0055 45.0 900 0.0815 0.4817 0.9633 0.9633 nan 0.9633 0.0 0.9633
0.0084 46.0 920 0.0815 0.4819 0.9638 0.9638 nan 0.9638 0.0 0.9638
0.005 47.0 940 0.0810 0.4814 0.9627 0.9627 nan 0.9627 0.0 0.9627
0.0044 48.0 960 0.0822 0.4826 0.9652 0.9652 nan 0.9652 0.0 0.9652
0.0053 49.0 980 0.0819 0.4821 0.9642 0.9642 nan 0.9642 0.0 0.9642
0.0066 50.0 1000 0.0823 0.4815 0.9630 0.9630 nan 0.9630 0.0 0.9630

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cpu
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.