See axolotl config
axolotl version: 0.4.1
base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
lora_fan_in_fan_out: false
data_seed: 49
seed: 49
datasets:
- path: sample_data/alpaca_synth_queries.jsonl
type: sharegpt
conversation: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./ft-v2
hub_model_id: mahendra0203/mistral-test-alpaca
adapter: qlora
lora_model_dir:
sequence_len: 512 # Reduced from 896
sample_packing: true # Enable sample packing
eval_sample_packing: false
pad_to_sequence_len: false # Changed to false
lora_r: 16 # Reduced from 32
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: ft-alpaca-mistral-hc
wandb_entity: mahendra0203
gradient_accumulation_steps: 8 # Increased from 4
micro_batch_size: 4 # Reduced from 16
eval_batch_size: 4 # Reduced from 16
num_epochs: 2
max_steps: 1000
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
max_grad_norm: 1.0
adam_beta2: 0.95
adam_epsilon: 0.00001
save_total_limit: 3 # Reduced from 12
train_on_inputs: false
group_by_length: true # Changed to true
bf16: true # Changed to false
fp16: false # Changed to true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: false
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 20
evals_per_epoch: 2 # Reduced from 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2 # Reduced from 6
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
save_safetensors: true
mistral-test-alpaca
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3251
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 49
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3818 | 0.6667 | 1 | 1.3490 |
1.3841 | 1.1667 | 2 | 1.3251 |
Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for mahendra0203/mistral-test-alpaca
Base model
mistralai/Mistral-7B-v0.1